雙曲線(xiàn)C:=1 (a>0,b>0)的右頂點(diǎn)為A,x軸上有一點(diǎn)Q(2a,0),若C上存在一點(diǎn)P,使·=0,求此雙曲線(xiàn)離心率的取值范圍.


解析:

設(shè)P點(diǎn)坐標(biāo)為(x,y),

則由·=0,得AP⊥PQ,

則P點(diǎn)在以AQ為直徑的圓上,

+y2=                        ①

又P點(diǎn)在雙曲線(xiàn)上,得=1            ②

由①,②消去y,得

(a2+b2)x2-3a3x+2a4-a2b2=0.

即[(a2+b2)x2-(2a3-ab2)](x-a)=0.

當(dāng)x=a時(shí),P與A重合,不符合題意,舍去.

當(dāng)x=時(shí),滿(mǎn)足題意的P點(diǎn)存在,

需x=>a,化簡(jiǎn)得a2>2b2,

即3a2>2c2,.∴離心率e=.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)離心率為e的雙曲線(xiàn)C:=1(a>0,b>0)的右焦點(diǎn)為F,直線(xiàn)l過(guò)焦點(diǎn)F,且斜率為k,則直線(xiàn)l與雙曲線(xiàn)C的左、右兩支都相交的充要條件是    (    )

A.k2-e2>1         B.k2-e2<1          C.e2-k2>1       D.e2-k2<1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)雙曲線(xiàn)C:-y2=1(a>0)與直線(xiàn)l:x+y=1相交于兩個(gè)不同的點(diǎn)A、B.

(1)求雙曲線(xiàn)C的離心率e的取值范圍;

(2)設(shè)直線(xiàn)l與y軸的交點(diǎn)為P,且=,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知雙曲線(xiàn)C:=1(a>0,b>0),B是右頂點(diǎn),F(xiàn)是右焦點(diǎn),點(diǎn)A在x軸正半軸上,且||、||、||成等比數(shù)列,過(guò)F作雙曲線(xiàn)C在第一、三象限的漸近線(xiàn)的垂線(xiàn)l,垂足為P.

(1)求證:·=·;

(2)若l與雙曲線(xiàn)C的左、右兩支分別相交于點(diǎn)D、E,求雙曲線(xiàn)離心率e的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)雙曲線(xiàn)C:-y2=1(a>0)與直線(xiàn)l:x+y=1相交于兩個(gè)不同的點(diǎn)A、B.

(1)求雙曲線(xiàn)C的離心率e的取值范圍;

(2)設(shè)直線(xiàn)l與y軸的交點(diǎn)為P,且=,求a的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案