設(shè)兩個(gè)方程x2-4x+lga=0,x2-4x+lgb=0(a≠b)的四個(gè)根組成一個(gè)公差為2的等差數(shù)列,則ab的值為_(kāi)_______.


分析:設(shè)方程x2-4x+lga=0的根為x1,x2,則有 x1•x2=lga,設(shè)x2-4x+lgb=0(a≠b)的根為 x3,x4,則有x3•x4=lgb.由題意可得得 x1,x3,x4,x2 成公差為2的等差數(shù)列,解得x1=-1,x3=1,x4=3,x2=5,由此求得 lga+lgb=lgab=x1•x2+x3•x4 的值.
解答:解:設(shè)方程x2-4x+lga=0的根為x1,x2,則有 x1+x2=4,x1•x2=lga.
設(shè)x2-4x+lgb=0(a≠b)的根為 x3,x4,則有x3+x4=4,x3•x4=lgb.
再由題意可得 x1,x3,x4,x2 成公差為2的等差數(shù)列,如圖所示:
故有x1=-1,x3=1,x4=3,x2=5.
∴l(xiāng)ga+lgb=lgab=x1•x2+x3•x4=-5+3=-2=lg,故 ab=
故答案為
點(diǎn)評(píng):本題主要考查一元二次方程的根與系數(shù)的關(guān)系,等差數(shù)列的定義和性質(zhì),體現(xiàn)了轉(zhuǎn)化、數(shù)形結(jié)合的數(shù)學(xué)思想,屬于中檔題
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)=4x+ax2-
2
3
x3(x∈R)
在區(qū)間[-1,1]上是增函數(shù).
(Ⅰ)求實(shí)數(shù)a的值組成的集合A;
(Ⅱ)設(shè)關(guān)于x的方程f(x)=2x+
1
3
x3
的兩個(gè)非零實(shí)根為x1、x2.試問(wèn):是否存在實(shí)數(shù)m,使得不等式m2+tm+1≥|x1-x2|對(duì)任意a∈A及t∈[-1,1]恒成立?若存在,求m的取值范圍;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若m∈R,命題p:設(shè)x1和x2是方程x2-ax-3=0的兩個(gè)實(shí)根,不等m2-2m-4≥|x1-x2|對(duì)任意實(shí)數(shù)a∈[-2,2]恒成立命題q:“4x+m<0”是“x2-x-2>0”的充分不必要條件.求使p且¬q為真命題的m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2010•廣東模擬)已知函數(shù)f(x)=4x+ax2-
2
3
x3(x∈R)

(1)若a=1,求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若函數(shù)f(x)在區(qū)間[-1,1]上單調(diào)遞增,求實(shí)數(shù)a的取值組成的集合A;
(3)設(shè)關(guān)于x的方程f(x)=2x+
1
3
x3
的兩個(gè)非零實(shí)根為x1,x2,試問(wèn)是否存在實(shí)數(shù)m,使得不等式m2+tm+1≥|x1-x2|對(duì)任意a∈A及t∈[-1,1]恒成立?若存在,求出m的取值范圍;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:山西省2012屆高三高考考前適應(yīng)性訓(xùn)練(預(yù)演預(yù)練)考試數(shù)學(xué)文科試題 題型:022

設(shè)兩個(gè)方程x2-4x+lga=0,x2-4x+lgb=0(a≠b)的四個(gè)根組成一個(gè)公差為2的等差數(shù)列,則ab的值為_(kāi)_______.

查看答案和解析>>

同步練習(xí)冊(cè)答案