三角形的面積數(shù)學(xué)公式為三角形的邊長(zhǎng),r為三角形內(nèi)切圓的半徑,利用類(lèi)比推理,可得出四面體的體積為


  1. A.
    數(shù)學(xué)公式
  2. B.
    數(shù)學(xué)公式
  3. C.
    數(shù)學(xué)公式(S1,S2,S3,S4分別為四面體的四個(gè)面的面積,r為四面體內(nèi)接球的半徑)
  4. D.
    數(shù)學(xué)公式
C
分析:根據(jù)平面與空間之間的類(lèi)比推理,由點(diǎn)類(lèi)比點(diǎn)或直線,由直線 類(lèi)比 直線或平面,由內(nèi)切圓類(lèi)比內(nèi)切球,由平面圖形面積類(lèi)比立體圖形的體積,結(jié)合求三角形的面積的方法類(lèi)比求四面體的體積即可.
解答:設(shè)四面體的內(nèi)切球的球心為O,則球心O到四個(gè)面的距離都是r,
根據(jù)三角形的面積的求解方法:分割法,將O與四頂點(diǎn)連起來(lái),可得四面體的體積等于以O(shè)為頂點(diǎn),分別以四個(gè)面為底面的4個(gè)三棱錐體積的和,
,
故選C.
點(diǎn)評(píng):類(lèi)比推理是指依據(jù)兩類(lèi)數(shù)學(xué)對(duì)象的相似性,將已知的一類(lèi)數(shù)學(xué)對(duì)象的性質(zhì)類(lèi)比遷移到另一類(lèi)數(shù)學(xué)對(duì)象上去.一般步驟:①找出兩類(lèi)事物之間的相似性或者一致性.②用一類(lèi)事物的性質(zhì)去推測(cè)另一類(lèi)事物的性質(zhì),得出一個(gè)明確的命題(或猜想)
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:2015屆福建晉江季延中學(xué)高二上學(xué)期期中考試文數(shù)學(xué)試卷(解析版) 題型:解答題

知橢圓的離心率為,橢圓短軸的一個(gè)端點(diǎn)與兩個(gè)焦點(diǎn)構(gòu)成的三角形的面積為,直線l的方程為: 

(Ⅰ)求橢圓的方程;

(Ⅱ)已知直線l與橢圓相交于、兩點(diǎn)

①若線段中點(diǎn)的橫坐標(biāo)為,求斜率的值;

②已知點(diǎn),求證:為定值

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年四川省成都市望子成龍學(xué)校高二(上)期中數(shù)學(xué)模擬試卷(解析版) 題型:選擇題

已知底面是正三角形,頂點(diǎn)在底面的射影是底面三角形的中心的三棱錐V-ABC的主視圖、俯視圖如圖所示,其中,D為棱CB的中點(diǎn),則該三棱錐的左視圖的面積為( )

A.9
B.6
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年廣東省梅州市興寧一中高二(下)期中數(shù)學(xué)試卷(文科)(解析版) 題型:選擇題

三角形的面積為三角形的邊長(zhǎng),r為三角形內(nèi)切圓的半徑,利用類(lèi)比推理,可得出四面體的體積為( )
A.
B.
C.(S1,S2,S3,S4分別為四面體的四個(gè)面的面積,r為四面體內(nèi)接球的半徑)
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012年湖北省孝感高中高三5月數(shù)學(xué)練習(xí)題1(文科)(解析版) 題型:選擇題

已知底面是正三角形,頂點(diǎn)在底面的射影是底面三角形的中心的三棱錐V-ABC的主視圖、俯視圖如圖所示,其中,D為棱CB的中點(diǎn),則該三棱錐的左視圖的面積為( )

A.9
B.6
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年湖北省武漢外國(guó)語(yǔ)學(xué)校、鐘祥一中高三(下)4月聯(lián)考數(shù)學(xué)試卷(文科)(解析版) 題型:選擇題

已知底面是正三角形,頂點(diǎn)在底面的射影是底面三角形的中心的三棱錐V-ABC的主視圖、俯視圖如圖所示,其中,D為棱CB的中點(diǎn),則該三棱錐的左視圖的面積為( )

A.9
B.6
C.
D.

查看答案和解析>>

同步練習(xí)冊(cè)答案