(本小題滿分13分)如圖,四面體中,的中點(diǎn),,.(Ⅰ)求證:平面;(Ⅱ)求異面直線所成角的大。

(Ⅲ)求二面角的大。
(Ⅰ) 見解析  (Ⅱ)   (Ⅲ)
(I)證明:
連接
,又

       平面
(II)方法1 取的中點(diǎn),的中點(diǎn),的中點(diǎn),或其補(bǔ)角是所成的角.∴連接斜邊上的中線,
.在中,由余弦定理得,∴直線所成的角為
(Ⅲ)方法l 平面,過,連接,
在平面上的射影,由三垂線定理得
是二面角的平面角,,又
中,
∴二面角
(II)方法2建立空間直角坐標(biāo)系.則

.∴直線所成的角為
(Ⅲ)方法2在坐標(biāo)系中,平面的法向量
設(shè)平面的法向量,則,
求得,
∴二面角
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖所示,平面ABC,CE//PA,PA=2CE=2。 
(1)求證:平面平面APB;  (2)求二面角A—BE—P的正弦值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分13分)如圖,四面體ABCD中,O是BD的中點(diǎn),
ABD和BCD均為等邊三角形,AB=2,AC=。
(1)求證:AO⊥平面BCD;(2)求二面角A—BC—D的大小;
(3)求O點(diǎn)到平面ACD的距離。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在四棱錐中,底面是邊長為2的菱形,且,
為正三角形,的中點(diǎn),為棱的中點(diǎn)
(1)求證:平面
(2)求二面角的大小

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,直二面角D—AB—E中,四邊形ABCD是邊長為2的正方形,AE=EB,F(xiàn)
為CE上的點(diǎn),且BF⊥平面ACE.
(Ⅰ)求證:AE⊥平面BCE;
(Ⅱ)求二面角B—AC—E的余弦值;
(Ⅲ)求點(diǎn)D到平面ACE的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知等腰梯形PDCB中(如圖1),PB=3,DC=1,PB=BC=,A為PB邊上一點(diǎn),且PA=1,將△PAD沿AD折起,使面
PAD⊥面ABCD(如圖2)。
(1)證明:平面PAD⊥PCD;
(2)試在棱PB上確定一點(diǎn)M,使截面AMC,把幾何體分成的兩部分;
(3)在M滿足(Ⅱ)的情況下,判斷直線AM是否平行面PCD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,在長方體ABCD-A1B1C1D1中,AB=BC=2,AA1=1,則BC1與平面BB1D1D所成角的正弦值為(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知正三棱柱中,,,點(diǎn)、、分別在棱、、上,且
(Ⅰ)求平面與平面所成銳二面角的大。
(Ⅱ)求點(diǎn)到平面的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如右放置在水平面上的組合體由直三棱柱與正三棱錐組成,其中,.它的正視圖、俯視圖、從左向右的側(cè)視圖的面積分別為,
(Ⅰ)求直線與平面所成角的正弦;
(Ⅱ)在線段上是否存在點(diǎn),使平面.若存在,確定點(diǎn)的位置;若不存在,說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案