【題目】在中,內(nèi)角的對邊分別為,已知.
(Ⅰ)求角的值;
(Ⅱ)若,當(dāng)取最小值時(shí),求的面積.
【答案】(1)(2)
【解析】
試題分析:方法一:(Ⅰ)利用正弦定理、誘導(dǎo)公式、兩角和的正弦公式化簡已知的式子,由內(nèi)角的范圍和特殊角的三角函數(shù)值求出角C;(Ⅱ)利用余弦定理列出方程,由條件和完全平方公式化簡后,利用基本不等式求出c的最小值,由面積公式求出△ABC的面積;方法二:(Ⅰ)利用余弦定理化簡已知的式子得到邊的關(guān)系,由余弦定理求出cosC的值,由內(nèi)角的范圍和特殊角的三角函數(shù)值求出角C;(Ⅱ)利用余弦定理列出方程,結(jié)合條件消元后,利用一元二次函數(shù)的性質(zhì)求出c的最小值,由面積公式求出△ABC的面積
試題解析:解法一(1)∵,∴ ……………………1分
∴ ……………2分
即 ……………3分
∴ 4分
∵ ∴ …………5分
又∵是三角形的內(nèi)角,∴ ……6分
(2)由余弦定理得: …………7分
∵ ,故 8分
∴ (當(dāng)且僅當(dāng)時(shí)等號成立) ………10分
∴的最小值為2,故 ……12分
解法二:(1)∵,∴ ………1分
∴ ,即 …………3分
∴ …5分
又∵是三角形的內(nèi)角,∴ 6分
(2)由已知,,即,故:
……………8分
∴ …………10分
∴當(dāng)時(shí),的最小值為2,故 …………12分
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知三次函數(shù),下列命題正確的是 .
①函數(shù)關(guān)于原點(diǎn)中心對稱;
②以,兩不同的點(diǎn)為切點(diǎn)作兩條互相平行的切線,分別與交于兩點(diǎn),則這四個(gè)點(diǎn)的橫坐標(biāo)滿足關(guān)系;
③以為切點(diǎn),作切線與圖像交于點(diǎn),再以點(diǎn)為切點(diǎn)作直線與圖像交于點(diǎn),再以點(diǎn)作切點(diǎn)作直線與圖像交于點(diǎn),則點(diǎn)橫坐標(biāo)為;
④若,函數(shù)圖像上存在四點(diǎn),使得以它們?yōu)轫旤c(diǎn)的四邊形有且僅有一個(gè)正方形.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某企業(yè)生產(chǎn)甲乙兩種產(chǎn)品均需用A,B兩種原料,已知生產(chǎn)1噸每種產(chǎn)品需原料及每天原料的可用限額如右表所示,如果生產(chǎn)1噸甲、乙產(chǎn)品可獲利潤分別為3萬元、4萬元,則該企業(yè)每天可獲得最大利潤為( )
A.12萬元 B.16萬元
C.17萬元 D.18萬元
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知方程.
(1)求該方程表示一條直線的條件;
(2)當(dāng)為何實(shí)數(shù)時(shí),方程表示的直線斜率不存在?求出這時(shí)的直線方程;
(3)已知方程表示的直線在軸上的截距為-3,求實(shí)數(shù)的值;
(4)若方程表示的直線的傾斜角是45°,求實(shí)數(shù)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù).
(1)在區(qū)間上畫出函數(shù)的圖象;
(2)設(shè)集合,.試判斷集合和之間的關(guān)系,并給出證明;
(3)當(dāng)時(shí),求證:在區(qū)間上,的圖象位于函數(shù)圖象的上方.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓的圓心為原點(diǎn),且與直線相切.
(1)求圓的方程;
(2)點(diǎn)在直線上,過點(diǎn)引圓的兩條切線,切點(diǎn)為,求證:直線恒過定點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某班一次數(shù)學(xué)考試成績頻率分布直方圖如圖所示,數(shù)據(jù)分組依次為,已知成績大于等于分的人數(shù)為人,現(xiàn)采用分層抽樣的方式抽取一個(gè)容量為的樣本.
(1)求每個(gè)分組所抽取的學(xué)生人數(shù);
(2)從數(shù)學(xué)成績在的樣本中任取人,求恰有人成績在的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司今年年初用25萬元引進(jìn)一種新的設(shè)備,投入設(shè)備后每年收益為21萬元。該公司第n年需要付出設(shè)備的維修和工人工資等費(fèi)用的信息如下圖。
(Ⅰ)求;
(Ⅱ)引進(jìn)這種設(shè)備后,第幾年后該公司開始獲利;
(Ⅲ)這種設(shè)備使用多少年,該公司的年平均獲利最大?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com