4.若函數(shù)f(x)=$\left\{\begin{array}{l}{{x}^{2}+1(x≥0)}\\{-x+1(x<0)}\end{array}\right.$,則f(-1)的值為( 。
A.1B.-1C.2D.-2

分析 根據(jù)函數(shù)的解析式直接求出f(-1)的值即可.

解答 解:因?yàn)楹瘮?shù)f(x)=$\left\{\begin{array}{l}{{x}^{2}+1(x≥0)}\\{-x+1(x<0)}\end{array}\right.$,
所以f(-1)=-(-1)+1=2,
故選C.

點(diǎn)評(píng) 本題考查分段函數(shù)的函數(shù)值,注意自變量的范圍,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.觀察下列式子:
1+$\frac{1}{{2}^{2}}$<$\frac{3}{2}$,
1+$\frac{1}{{2}^{2}}$+$\frac{1}{{3}^{2}}$<$\frac{5}{3}$,
1+$\frac{1}{{2}^{2}}$+$\frac{1}{{3}^{2}}$+$\frac{1}{{4}^{2}}$<$\frac{7}{4}$,

據(jù)以上式子可以猜想:1+$\frac{1}{{2}^{2}}$+$\frac{1}{{3}^{2}}$+$\frac{1}{{4}^{2}}$+…+$\frac{1}{{{{2016}^2}}}$<1+$\frac{1}{{2}^{2}}$+$\frac{1}{{3}^{2}}$+$\frac{1}{{4}^{2}}$+…+$\frac{1}{{{{2016}^2}}}$<$\frac{4031}{2016}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.以平面直角坐標(biāo)系的原點(diǎn)為極點(diǎn),x軸的正半軸為極軸,建立極坐標(biāo)系,兩種坐標(biāo)系中取相同的長(zhǎng)度單位.已知直線l的極坐標(biāo)方程為$ρsin(θ+\frac{π}{3})=m$,圓C的參數(shù)方程為$\left\{\begin{array}{l}x=2+2cost\\ y=2sint\end{array}$(t為參數(shù)).
(1)求直線l的直角坐標(biāo)方程和圓C的普通方程;
(2)若直線l與圓C有公共點(diǎn),求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.給出下列四個(gè)命題:
①f(x)=sin(2x-$\frac{π}{4}$)的對(duì)稱軸為x=$\frac{kπ}{2}$+$\frac{3π}{8}$,k∈Z;
②若函數(shù)y=2cos(ax-$\frac{π}{3}$)的最小正周期是π,則a=2;
③函數(shù)f(x)=sinxcosx-1的最小值為-$\frac{3}{2}$;
④函數(shù)y=sin(x+$\frac{π}{4}$)在[-$\frac{π}{2}$,$\frac{π}{2}$]上是增函數(shù).
其中正確命題的個(gè)數(shù)是( 。
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.(1)已知雙曲線$\frac{{x}^{2}}{5}$-$\frac{{y}^{2}}{4}$=1求雙曲線的實(shí)軸長(zhǎng)、虛軸長(zhǎng)、漸近線方程及離心率.
(2)求頂點(diǎn)在原點(diǎn),對(duì)稱軸為坐標(biāo)軸,且經(jīng)過(guò)點(diǎn)(-6,-4)的拋物線的標(biāo)準(zhǔn)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.命題p:?x>0,x-lnx>0,則¬p是(  )
A.?x≤0,x-lnx≤0B.?x>0,x-lnx≤0C.?x≤0,x-lnx≤0D.?x>0,x-ln≤0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.lg125+lg8=3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.已知a=log20.5,b=20.5,c=0.52,則a、b、c的大小關(guān)系是(  )
A.a<c<bB.a<b<cC.b<c<aD.c<a<b

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.若cos(3π+α)=-$\frac{1}{2}$,$\frac{3π}{2}$<α<2π,則sin(2π+α)=(  )
A.$\frac{1}{2}$B.±$\frac{\sqrt{3}}{2}$C.$\frac{\sqrt{3}}{2}$D.-$\frac{\sqrt{3}}{2}$

查看答案和解析>>

同步練習(xí)冊(cè)答案