精英家教網 > 高中數學 > 題目詳情
已知平行四邊形ABCD,點E、F分別為邊BC、CD上的中點,若,則λ+μ=   
【答案】分析:=,=,將則都表示成、的線性組合,再結合已知等式和=+建立等式,通過比較系數得到關于λ、μ的方程組,解之即得λ+μ的值.
解答:解:設=,=,則=-=-,=+,
,
+=λ(-)+μ(-),可得
解之得,λ=μ=2,故λ+μ=4
故答案為:4
點評:本題在平行四邊形中給出一組鄰邊的中點,將一個向量表示成另外兩向量的線性組合,著重考查了平面向量基本定理和向量加減法的定義等知識,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知O為△ABC的外心,以線段OA、OB為鄰邊作平行四邊形,第四個頂點為D,再以OC、OD為鄰邊作平行四邊形,它的第四個頂點為H.
(1)若
OA
=
a
,
OB
=
b
,
OC
=
c
,
OH
=
h
,試用
a
b
、
c
表示
h
;
(2)證明:
AH
BC
;
(3)若△ABC的∠A=60°,∠B=45°,外接圓的半徑為R,用R表示|
h
|

查看答案和解析>>

科目:高中數學 來源: 題型:

已知以Rt△ABC的直角邊AB為直徑作⊙O,與斜邊AC交于點D,E為BC邊上的中點,連結DE.

(1)如圖,求證:DE是⊙O的切線;

(2)連結OE、AE,當∠CAB為何值時,四邊形AOED是平行四邊形,并在此條件下求sin∠CAE的值.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知O為△ABC的外心,以線段OA、OB為鄰邊作平行四邊形,第四個頂點為D,再以OC、OD為鄰邊作平行四邊形,它的第四個頂點為H.
(1)若
OA
=
a
,
OB
=
b
,
OC
=
c
,
OH
=
h
,試用
a
b
、
c
表示
h
;
(2)證明:
AH
BC
;
(3)若△ABC的∠A=60°,∠B=45°,外接圓的半徑為R,用R表示|
h
|

查看答案和解析>>

科目:高中數學 來源:2009-2010學年遼寧省沈陽二中高一(下)期中數學試卷(必修4)(解析版) 題型:解答題

已知O為△ABC的外心,以線段OA、OB為鄰邊作平行四邊形,第四個頂點為D,再以OC、OD為鄰邊作平行四邊形,它的第四個頂點為H.
(1)若,試用表示;
(2)證明:;
(3)若△ABC的∠A=60°,∠B=45°,外接圓的半徑為R,用R表示

查看答案和解析>>

科目:高中數學 來源:2011-2012學年廣東省肇慶市南豐中學高三(上)數學復習試卷C (必修4)(解析版) 題型:解答題

已知O為△ABC的外心,以線段OA、OB為鄰邊作平行四邊形,第四個頂點為D,再以OC、OD為鄰邊作平行四邊形,它的第四個頂點為H.
(1)若,試用表示;
(2)證明:
(3)若△ABC的∠A=60°,∠B=45°,外接圓的半徑為R,用R表示

查看答案和解析>>

同步練習冊答案