【題目】已知空間幾何體中, 與均為邊長(zhǎng)為的等邊三角形, 為腰長(zhǎng)為的等腰三角形,平面平面,平面平面.
(Ⅰ)試在平面內(nèi)作一條直線,使得直線上任意一點(diǎn)與的連線均與平面平行,并給出詳細(xì)證明;
(Ⅱ)求三棱錐的體積.
【答案】(Ⅰ)見(jiàn)解析;(Ⅱ) .
【解析】試題分析:
(Ⅰ)取中點(diǎn),取中點(diǎn),連結(jié),則即為所求.
取中點(diǎn),連結(jié),則,由線面垂直的性質(zhì)定理可得平面,同理可證平面,則平面.結(jié)合幾何關(guān)系可得平面.故平面平面, 平面.
(Ⅱ)連結(jié),取中點(diǎn),連結(jié),則,由(Ⅰ)可知平面,結(jié)合幾何關(guān)系可得, , . .
試題解析:
(Ⅰ)如圖所示,取中點(diǎn),取中點(diǎn),連結(jié),則即為所求.
證明:取中點(diǎn),連結(jié),
∵為腰長(zhǎng)為的等腰三角形, 為中點(diǎn),
∴,
又平面平面,
平面平面, 平面,
∴平面,
同理可證平面,
∴,
∵平面, 平面,
∴平面.
又, 分別為, 中點(diǎn),
∴,
∵平面, 平面,
∴平面.
又, 平面, 平面,
∴平面平面,
又平面,∴平面.
(Ⅱ)連結(jié),取中點(diǎn),連結(jié),則,
由(Ⅰ)可知平面,
所以點(diǎn)到平面的距離與點(diǎn)到平面的距離相等.
又是邊長(zhǎng)為的等邊三角形,∴,
又平面平面,平面平面, 平面,
∴平面,∴平面,
∴,又為中點(diǎn),∴,
又, ,∴.
∴ .
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知f(x)=a(x-lnx)+,a∈R.
(I)討論f(x)的單調(diào)性;
(II)當(dāng)a=1時(shí),證明f(x)>f’(x)+對(duì)于任意的x∈[1,2] 恒成立。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四棱錐的底面是直角梯形, , , ,點(diǎn)在線段上,且, , 平面.
(1)求證:平面平面;
(2)當(dāng)四棱錐的體積最大時(shí),求平面與平面所成二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù).
(1)當(dāng)時(shí), 恒成立,求的范圍;
(2)若在處的切線為,求的值.并證明當(dāng))時(shí), .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知梯形如圖(1)所示,其中, ,四邊形是邊長(zhǎng)為的正方形,現(xiàn)沿進(jìn)行折疊,使得平面平面,得到如圖(2)所示的幾何體.
(Ⅰ)求證:平面平面;
(Ⅱ)已知點(diǎn)在線段上,且平面,求與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)數(shù)列的首項(xiàng)為,前項(xiàng)和為,若對(duì)任意的,均有(是常數(shù)且)成立,則稱數(shù)列為“數(shù)列”.
(1)若數(shù)列為“數(shù)列”,求數(shù)列的通項(xiàng)公式;
(2)是否存在數(shù)列既是“數(shù)列”,也是“數(shù)列”?若存在,求出符合條件的數(shù)列的通項(xiàng)公式及對(duì)應(yīng)的的值;若不存在,請(qǐng)說(shuō)明理由;
(3)若數(shù)列為“數(shù)列”, ,設(shè),證明: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線: 的焦點(diǎn)為,圓: ,過(guò)作垂直于軸的直線交拋物線于、兩點(diǎn),且的面積為.
(1)求拋物線的方程和圓的方程;
(2)若直線、均過(guò)坐標(biāo)原點(diǎn),且互相垂直, 交拋物線于,交圓于, 交拋物線于,交圓于,求與的面積比的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在多面體,底面是菱形, , 平面, , , , .
(1)求證: ;
(2)求平面與平面所成銳角二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】[選修4-4:坐標(biāo)系與參數(shù)方程]
在平面直角坐標(biāo)系中,已知直線: (為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn), 軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(1)求曲線的直角坐標(biāo)方程;
(2)設(shè)點(diǎn)的極坐標(biāo)為,直線與曲線的交點(diǎn)為, ,求的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com