分析 由題意,BC的中點(diǎn)O′是△DBC外接圓的圓心,設(shè)球心為O,OO′=d,球的半徑為R,則由勾股定理可得R2=d2+($\sqrt{3}$)2=12+($\sqrt{2}$-d)2,求出球的半徑,即可求出球O的體積.
解答 解:由題意,BC的中點(diǎn)O′是△DBC外接圓的圓心,設(shè)球心為O,OO′=d,球的半徑為R,則
由勾股定理可得R2=d2+($\sqrt{3}$)2=12+($\sqrt{2}$-d)2,∴R=$\sqrt{3}$,
∴球O的體積為$\frac{4}{3}•(\sqrt{3})^{3}$=4$\sqrt{3}$π.
故答案為4$\sqrt{3}$π.
點(diǎn)評 本題考查球O的體積,考查學(xué)生的計(jì)算能力,求出球O的半徑是關(guān)鍵.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-1,2) | B. | (-∞,-1)∪(2,+∞) | C. | [-1,2] | D. | (-∞,-1]∪[2,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $4\sqrt{2}$ | B. | $2\sqrt{2}$ | C. | 4 | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | y=sin(x+$\frac{π}{6}$) | B. | y=sin(2x-$\frac{π}{6}$) | C. | y=cos(4x-$\frac{π}{3}$) | D. | y=cos(2x-$\frac{π}{6}$) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | p?Q | B. | P∩Q=∅ | C. | P∪Q=Q | D. | CRP=Q |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com