設(shè)F1,F(xiàn)2分別為雙曲線=1(a>0,b>0)的左,右焦點,若在雙曲線右支上存在一點P,滿足|PF2|=|F1F2|,且點F2到直線PF1的距離等于雙曲線的實軸長,則該雙曲線的離心率e為(  )

A. B. C. D.

 

D

【解析】設(shè)PF1的中點為M,連接F2M,由題意知|F1F2|=|PF2|=2c,則F2M⊥PF1,所以|MF2|即為點F2到直線PF1的距離,故|MF2|=2a.

由雙曲線的定義可知|PF1|=|PF2|+2a=2a+2c,從而|F1M|=a+c,

故可得(2c)2=(a+c)2+(2a)2,得e= (負(fù)值舍去).

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):9-1隨機(jī)抽樣(解析版) 題型:填空題

一個總體中的1000個個體編號為0,1,2,…,999,并依次將其分為10個小組,組號為0,1,2,…,9,要用系統(tǒng)抽樣的方法抽取一個容量為10的樣本,規(guī)定若在第0組隨機(jī)抽取的號碼為x,則第k組中抽取的號碼的后兩位數(shù)為x+33k的后兩位數(shù).當(dāng)x=24時,所抽取樣本的10個號碼是________,若所抽取樣本的10個號碼中有一個的后兩位數(shù)是87,則x的取值集合是________.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):8-8曲線與方程(解析版) 題型:選擇題

設(shè)圓(x+1)2+y2=25的圓心為C,A(1,0)是圓內(nèi)一定點,Q為圓周上任一點.線段AQ的垂直平分線與CQ的連線交于點M,則M的軌跡方程為(  )

A.=1 B.=1

C.=1 D.=1

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):8-7拋物線(解析版) 題型:選擇題

已知F是拋物線y2=x的焦點,A,B是該拋物線上的兩點,|AF|+|BF|=3,則線段AB的中點到y(tǒng)軸的距離為(  )

A. B. C. D.1

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):8-6雙曲線(解析版) 題型:解答題

已知雙曲線的中心在原點,焦點F1,F(xiàn)2在坐標(biāo)軸上,離心率為,且過點(4,-).

(1)求雙曲線方程;

(2)若點M(3,m)在雙曲線上,求證:·=0;

(3)求△F1MF2的面積.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):8-6雙曲線(解析版) 題型:選擇題

已知雙曲線=1的右焦點為(3,0),則該雙曲線的離心率等于(  )

A. B. C. D.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):8-5橢圓(解析版) 題型:填空題

若橢圓=1的焦點在x軸上,過點(1,)作圓x2+y2=1的切線,切點分別為A,B,直線AB恰好經(jīng)過橢圓的右焦點和上頂點,則橢圓方程是________.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):8-4直線與圓、圓與圓的位置關(guān)系(解析版) 題型:填空題

已知直線l:x-y+4=0與圓C:(x-1)2+(y-1)2=2,則圓C上各點到l距離的最小值為________,最大值為________.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):8-1直線的傾斜角與斜率、直線方程(解析版) 題型:填空題

若關(guān)于x的方程|x-1|-kx=0有且只有一個正實數(shù)根,則實數(shù)k的取值范圍是________.

 

查看答案和解析>>

同步練習(xí)冊答案