由P(3,0)到x2+y2=1的切線長是

[  ]

           

A.

B.-2

C.2

D.-2或2   

答案:C
解析:

解: │PT│==2

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的離心率為
5
3
,短軸一個端點到右焦點的距離為3.
(1)求橢圓C的方程;
(2)過橢圓C上的動點P引圓O:x2+y2=b2的兩條切線PA、PB,A、B分別為切點,試探究橢圓C上是否存在點P,由點P向圓O所引的兩條切線互相垂直?若存在,請求出點P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•閔行區(qū)三模)在直角坐標(biāo)平面xoy中,已知兩定點F1(-1,0)與F2(1,0)位于動直線l:ax+by+c=0的同側(cè),設(shè)集合P={l|點F1與點F2到直線l的距離之差等于1},Q={(x,y)|x2+y2≤1,y∈R},
記S={(x,y)|(x,y)∉l,l∈P},T={(x,y)|(x,y)∈Q∩S}.則由T中的所有點所組成的圖形的面積是
3
2
+
π
3
3
2
+
π
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2008•盧灣區(qū)二模)(文)(1)已知動點P(x,y)到點F(0,1)與到直線y=-1的距離相等,求點P的軌跡L的方程;
(2)若正方形ABCD的三個頂點A(x1,y1),B(x2,y2),C(x3,y3)(x1<0≤x2<x3)在(1)中的曲線L上,設(shè)BC的斜率為k,l=|BC|,求l關(guān)于k的函數(shù)解析式l=f(k);
(3)由(2),求當(dāng)k=2時正方形ABCD的頂點D的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年廣東省高三8月第一次月考文科數(shù)學(xué)試卷(解析版) 題型:解答題

(本題滿分14分)

已知橢圓C:(a>b>0)的離心率為,短軸一個端點到右焦點的距離為3.

(1)求橢圓C的方程;

(2)過橢圓C上的動點P引圓O:x2+y2=b2的兩條切線PA、PB,A、B分別為切點,試探究橢圓C上是否存在點P,由點P向圓O所引的兩條切線互相垂直?若存在,請求出點P的坐標(biāo);若不存在,請說明理由.

 

查看答案和解析>>

同步練習(xí)冊答案