分析 由已知利用誘導(dǎo)公式可求sinα,結(jié)合角的范圍,利用同角三角函數(shù)基本關(guān)系式可求cosα,進(jìn)而利用二倍角的正弦函數(shù)公式即可計算得解.
解答 解:∵$cos(\frac{5π}{2}+α)=\frac{3}{5}$=-sinα,
∴sinα=-$\frac{3}{5}$,
∵$-\frac{π}{2}<α<0$,
∴cosα=$\sqrt{1-si{n}^{2}α}$=$\frac{4}{5}$,sin2α=2sinαcosα=2×(-$\frac{3}{5}$)×$\frac{4}{5}$=-$\frac{24}{25}$.
故答案為:-$\frac{24}{25}$.
點評 本題主要考查了誘導(dǎo)公式,同角三角函數(shù)基本關(guān)系式,二倍角的正弦函數(shù)公式在三角函數(shù)化簡求值中的應(yīng)用,考查了計算能力和轉(zhuǎn)化思想,屬于基礎(chǔ)題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ?x∉R,2x≠5 | B. | ?x∈R,2x≠5 | C. | ?x∉R,2x≠5 | D. | ?x∈R,2x≠5 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com