A. | 1 | B. | $\sqrt{2}$ | C. | $\sqrt{2}$-1 | D. | 2-$\sqrt{2}$ |
分析 由題意可得$\overrightarrow{c}$($\overrightarrow{a}$+$\overrightarrow$)≥1,只需求|$\overrightarrow{a}$+$\overrightarrow$-2$\overrightarrow{c}$|2最大值即可,然后根據(jù)數(shù)量積的運算法則展開即可求得.
解答 解:∵$\overrightarrow{a}$•$\overrightarrow$=0,($\overrightarrow{a}$-$\overrightarrow{c}$)•($\overrightarrow$-$\overrightarrow{c}$)≤0,
∴$\overrightarrow{a}•\overrightarrow$-$\overrightarrow{a}•\overrightarrow{c}$-$\overrightarrow$•$\overrightarrow{c}$+${\overrightarrow{c}}^{2}$≤0,
∴$\overrightarrow{c}$($\overrightarrow{a}$+$\overrightarrow$)≥1,
∴|$\overrightarrow{a}$+$\overrightarrow$-2$\overrightarrow{c}$|2=($\overrightarrow{a}$-$\overrightarrow{c}$)2+($\overrightarrow$-$\overrightarrow{c}$)2+2($\overrightarrow{a}$-$\overrightarrow{c}$)•($\overrightarrow$-$\overrightarrow{c}$)=4-2$\overrightarrow{c}$($\overrightarrow{a}$+$\overrightarrow$)+2[-($\overrightarrow{c}$($\overrightarrow{a}$+$\overrightarrow$)+1]=6-4$\overrightarrow{c}$($\overrightarrow{a}$+$\overrightarrow$)≤6-4=2,
∴|$\overrightarrow{a}$+$\overrightarrow$-2$\overrightarrow{c}$|的最大值$\sqrt{2}$
故選:B
點評 本題考查平面向量數(shù)量積的運算和模的計算問題,考查學生靈活應用知識分析、解決問題的能力,屬中檔題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{{2\sqrt{2}}}{3}π$ | B. | $2\sqrt{2}π$ | C. | $8\sqrt{2}π$ | D. | $\frac{{8\sqrt{2}}}{3}π$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 在頻率分布直方圖中,眾數(shù)左邊和右邊的直方圖的面積相等 | |
B. | 為調(diào)查高三年級的240名學生完成作業(yè)所需的時間,由教務處對高三年級的學生進行編號,從001到240抽取學號最后一位為3的學生進行調(diào)查,則這種抽樣方法為分層抽樣 | |
C. | “x≠1”是“x2-3x+2≠0”的充分不必要條件 | |
D. | 命題p:“?x0∈R,${x_0}^2-3{x_0}+2<0$”的否定為:“?x∈R,x2-3x+2≥0” |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com