(14分)(2011•陜西)設(shè)f(x)=lnx,g(x)=f(x)+f′(x).
(Ⅰ)求g(x)的單調(diào)區(qū)間和最小值;
(Ⅱ)討論g(x)與的大小關(guān)系;
(Ⅲ)求a的取值范圍,使得g(a)﹣g(x)<對任意x>0成立.

(Ⅰ)(0,1)是g(x)的單調(diào)減區(qū)間;(1,+∞)是g(x)的單調(diào)遞增區(qū)間
(Ⅱ)
(Ⅲ)0<a<e

解析試題分析:(I)求導,并判斷導數(shù)的符號確定函數(shù)的單調(diào)區(qū)間和極值、最值,即可求得結(jié)果;
(Ⅱ)通過函數(shù)的導數(shù),利用函數(shù)的單調(diào)性,半徑兩個函數(shù)的大小關(guān)系即可.
(Ⅲ)利用(Ⅰ)的結(jié)論,轉(zhuǎn)化不等式,求解即可.
解:(Ⅰ)由題設(shè)知f(x)=lnx,g(x)=lnx+
∴g'(x)=,令g′(x)=0得x=1,
當x∈(0,1)時,g′(x)<0,故(0,1)是g(x)的單調(diào)減區(qū)間.
當x∈(1,+∞)時,g′(x)>0,故(1,+∞)是g(x)的單調(diào)遞增區(qū)間,
因此,x=1是g(x)的唯一值點,且為極小值點,
從而是最小值點,所以最小值為g(1)=1.
(II)
設(shè),則h'(x)=﹣
當x=1時,h(1)=0,即,
當x∈(0,1)∪(1,+∞)時,h′(1)=0,
因此,h(x)在(0,+∞)內(nèi)單調(diào)遞減,
當0<x<1時,h(x)>h(1)=0,即
當x>1時,h(x)<h(1)=0,即
(III)由(I)知g(x)的最小值為1,
所以,g(a)﹣g(x)<,對任意x>0,成立?g(a)﹣1<,
即Ina<1,從而得0<a<e.
點評:此題是個難題.主要考查導數(shù)等基礎(chǔ)知識,考查推理論證能力和、運算求解能力,考查函數(shù)與方程思想,數(shù)形結(jié)合思想,化歸和轉(zhuǎn)化思想,分類與整合思想.其考查了同學們觀察、推理以及創(chuàng)造性地分析問題、解決問題的能力.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

函數(shù)
(1)a=0時,求f(x)最小值;
(2)若f(x)在是單調(diào)減函數(shù),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

在平面直角坐標系中,長度為3的線段AB的端點A、B分別在軸上滑動,點M在線段AB上,且,
(1)若點M的軌跡為曲線C,求其方程;
(2)過點的直線與曲線C交于不同兩點E、F,N是曲線上不同于E、F的動點,求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)處取極值.
(1)求的值;
(2)求上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù),.
(1)討論內(nèi)和在內(nèi)的零點情況.
(2)設(shè)內(nèi)的一個零點,求上的最值.
(3)證明對恒有.[來

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù),.
(1)當時,證明:
(2)若,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知,函數(shù),.
(1)求函數(shù)的單調(diào)區(qū)間;
(2)求證:對于任意的,都有.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

設(shè)函數(shù).
(1)當時,求函數(shù)在區(qū)間內(nèi)的最大值;
(2)當時,方程有唯一實數(shù)解,求正數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知A、B、C是直線l上不同的三點,O是l外一點,向量滿足:記y=f(x).
(1)求函數(shù)y=f(x)的解析式:
(2)若對任意不等式恒成立,求實數(shù)a的取值范圍:
(3)若關(guān)于x的方程f(x)=2x+b在(0,1]上恰有兩個不同的實根,求實數(shù)b的取值范圍.

查看答案和解析>>

同步練習冊答案