關(guān)于x的不等式a•|x|+x2+1≥0恒成立,則實(shí)數(shù)a的取值范圍為
 
考點(diǎn):絕對(duì)值不等式的解法
專(zhuān)題:不等式的解法及應(yīng)用
分析:當(dāng)x=0時(shí),a•|x|+x2+1-1≥0恒成立,當(dāng)x≠0時(shí),a•|x|+x2+1≥0恒成立?a≥-|x|-
1
|x|
恒成立,利用基本不等式求出-|x|-
1
|x|
的最大值,綜合討論結(jié)果,可得答案.
解答: 解:當(dāng)x=0時(shí),a•|x|+x2+1-1≥0恒成立,
當(dāng)x≠0時(shí),a•|x|+x2+1≥0恒成立?a≥-|x|-
1
|x|
恒成立,
∵|x|+
1
|x|
≥2
|x|•
1
|x|
=2,
∴-|x|-
1
|x|
≤-2,
∴a≥-2,
故實(shí)數(shù)a的取值范圍為:[-2,+∞),
故答案為:[-2,+∞)
點(diǎn)評(píng):本題考查的知識(shí)點(diǎn)是基本不等式,恒成立問(wèn)題,其中將恒成立問(wèn)題轉(zhuǎn)化為最值問(wèn)題是解答的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖所示(單位:cm),四邊形ABCD為直角梯形,求圖形中陰影部分繞AB旋轉(zhuǎn)一周所成的幾何體的表面積和體積,并畫(huà)出該幾何體的三視圖.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

海監(jiān)船甲在南海黃巖島正常巡航,在巡航到A處海域時(shí),發(fā)現(xiàn)北偏東45°方向距A為
3
-1海里B處有一艘可疑越境船只,在A處北偏西75°方向,距A為2海里的C處另一艘海監(jiān)船乙奉命以10
3
海里/小時(shí)的速度追截可疑船只,此時(shí)可疑船只正以10海里/小時(shí)的速度從B處向北偏東30°方向逃竄,問(wèn)海監(jiān)船乙沿什么方向能最快追上可疑船只?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

甲、乙兩地相距S千米,汽車(chē)從甲地勻速行駛到乙,速度不得超過(guò)c千米/小時(shí),已知汽車(chē)每小時(shí)的運(yùn)輸成本由可變部分和固定部分組成:可變部分與速度v(單位:千米/小時(shí))的平方成正比,比例系數(shù)為b,固定部分為a元,為使全程運(yùn)輸成本最小,汽車(chē)應(yīng)以多大速度行駛?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

我們把形如y=
b
|x|-a
(a>0,b>0)的函數(shù)稱(chēng)為“莫言函數(shù)”,并把其與y軸的交點(diǎn)關(guān)于原點(diǎn)的對(duì)稱(chēng)點(diǎn)稱(chēng)為“莫言點(diǎn)”,以“莫言點(diǎn)”為圓心凡是與“莫言函數(shù)”有公共點(diǎn)的圓,皆稱(chēng)之為“莫言圓”,則當(dāng)a=1,b=1時(shí),
(1)莫言函數(shù)的單調(diào)增區(qū)間為:
 

(2)所有的“莫言圓”中,面積的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(X)=
x2+a
ex
(x∈R)(e是自然對(duì)數(shù)的底數(shù)).
(1)當(dāng)a=-15時(shí),求f(x)的單調(diào)區(qū)間;
(2)若f(x)在區(qū)間[
1
e
,e]上是增函數(shù),求實(shí)數(shù)a的取值范圍;
(3)證明
1+12
e
+
1+22
e2
+
1+32
e3
+…+
1+n2
en
5n
4
e
對(duì)一切n∈N*恒成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

求函數(shù)f(x)=ln(1+x)-
1
4
x2在[0,2]上的最大值是
 
,最小值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

f(x)=
4x•a+2x+1
的定義域?yàn)椋?∞,1],則實(shí)數(shù)a的取值集合是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=
2x-1
+x的值域是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案