(14分)在正三角形ABC中,E、F、P分別是AB、AC、BC邊上的點(diǎn),滿足AE:EB=CF:FA=CP:PB=1:2(如圖1)。將△AEF沿EF折起到的位置,使二面角A1-EF-B成直二面角,連結(jié)A1B、A1P(如圖2)

(Ⅰ)求證:A1E⊥平面BEP;

(Ⅱ)求二面角A1-BP-E的大小。

 

【答案】

 

解:不妨設(shè)正三角形的邊長(zhǎng)為3,則

(I)在圖1中,取BE的中點(diǎn)D,連結(jié)DF,

∵AE∶EB=CF∶FA=1∶2,∴AF=AD=2,而∠A=60o,∴△ADF為正三角形。

又AE=DE=1,∴EF⊥AD。

在圖2中,A1E⊥EF,BE⊥EF,∴∠A1EB為二面角A1-EF-B的一個(gè)平面角,

由題設(shè)條件知此二面角為直二面角,∴A1E⊥BE。

又BEEF=E,∴A1E⊥面BEF,即A1E⊥面BEP!..7

(II)在圖2中,過E點(diǎn)作BP的垂線,并交BP于G點(diǎn),連接A1G,由(I)知A1E⊥平面BEP,∴ A1GE即為二面角A1-BP-E的平面角,又A1E=1,GE=,∴A1GE=,∴A1GE=,即所求為!14

 

【解析】略

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

197、已知結(jié)論“在正三角形ABC中,若D是邊BC中點(diǎn),G是三角形ABC的重心,則AG:GD=2:1”,如果把該結(jié)論推廣到空間,則有命題
“在正四面體ABCD中,若M是底面BCD的中心,O是正四面體ABCD的中心,則AO:OM=3:1.”

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)在正三角形ABC中,E、F分別是AB、AC邊上的點(diǎn),滿足
AE
EB
=
CF
FA
=
1
2
(如圖1).將△AEF沿EF折起到△A1EF的位置,使二面角A1-EF-B成直二面角,連接A1B、A1C. (如圖2)求證:A1E⊥平面BEC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在正三角形ABC中,D,E,F(xiàn)分別為各邊的中點(diǎn),G,J分別為AF,DE的中點(diǎn).將△ABC沿DE,EF,DF折成三棱錐以后,GJ與DE所成角的度數(shù)為(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在正三角形ABC中,D,E,F(xiàn)分別為AB,BC,AC的中點(diǎn),G,H,I分別為DE,F(xiàn)C,EF的中點(diǎn),將
△ABC沿DE,EF,DF折成三棱錐,則異面直線BG與IH所成的角為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在正三角形ABC中,D是BC上的點(diǎn),AB=3,BD=2,則
AB
AD
 

查看答案和解析>>

同步練習(xí)冊(cè)答案