2.某工廠某產(chǎn)品產(chǎn)量y(千件)與單位成本x(元)滿足線性回歸方程$\widehat{y}$=75.7-2.13x,則以下說法中正確的是( 。
A.產(chǎn)量每增加1000件,單位成本下降2.13元
B.產(chǎn)量每減少1000件,單位成本下降2.13元
C.產(chǎn)量每增加1000件,單位成本上升2130元
D.產(chǎn)量每減少1000件,單位成本上升2130元

分析 根據(jù)線性回歸直線的意義,分別進行判斷即可.

解答 解:當產(chǎn)量每增加1000件,即增加1千時,單位成本變化為f(x+1)-f(x)=75.7-2.13(x+1)-75.7+2.13x=-2.13,即單位成本下降2.13元,
當產(chǎn)量每減少1000件,即減少1千時,單位成本變化為f(x-1)-f(x)=75.7-2.13(x-1)-75.7+2.13x=2.13,即單位成本上升2.13元,
故選:A

點評 本題主要考查線性回歸方程的應(yīng)用,根據(jù)回歸方程求出對應(yīng)的增量關(guān)系是解決本題的關(guān)鍵.比較基礎(chǔ).

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

12.已知正四棱錐P-ABCD的五個頂點都在同一個球面上,若該正四棱錐的底面邊長為4,側(cè)棱長為$2\sqrt{6}$,則此球的體積為36π.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.已知函數(shù)f(x)=$\frac{1}{2}{x^2}+ax-2{a^2}$lnx(a≠0).
(I)討論函數(shù)f(x)的單調(diào)性;
(Ⅱ)若f(x)>0恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.過(4,0)的直線與拋物線y2=4x交于A(x1y1),B(x2,y2)兩點.
(1)求證:x1x2,y1y2均為定值.
(2)求證:以線段AB為直徑的圓經(jīng)過一定點,并求出該定點的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.觀察下列各式:55=3125,56=15625,57=78125,…,則52016的末四位數(shù)字為( 。
A.3125B.5625C.0625D.8125

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

7.已知函數(shù)y=16-x2,那么當x∈(-∞,-4)∪(4,+∞)時,y<0;當x±4時,y=0;當x(-4,4)時,y>0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

14.已知函數(shù)f(x)=e2x(e2x-4a)+x(x-2a)+5a2,若?x0∈R,使得f(x0)≤$\frac{1}{5}$成立,則實數(shù)a的值為$\frac{2}{5}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.已知關(guān)于x的方程(m+1)x2+2(2m+1)x+1-3m=0的兩根為x1,x2,若x1<1<x2<3,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.已知函數(shù)f(x)=$\frac{1}{3}$x3-(a+2)x2+a(a+4)x+5在區(qū)間(-1,2)內(nèi)單調(diào)遞減,求a的取值范圍.

查看答案和解析>>

同步練習冊答案