(本題14分)口袋內(nèi)有)個大小相同的球,其中有3個紅球和個白球.已知從

口袋中隨機(jī)取出一個球是紅球的概率是,且。若有放回地從口袋中連續(xù)地取四次球(每次只取一個球),在四次取球中恰好取到兩次紅球的概率大于。

(Ⅰ)求;

(Ⅱ)不放回地從口袋中取球(每次只取一個球),取到白球時即停止取球,記為第一次取到白球時的取球次數(shù),求的分布列和期望。

 

【答案】

(1)  (2)

【解析】

試題分析:解:(I)由題設(shè)知,,

因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2013041419400711719281/SYS201304141940506328624476_DA.files/image005.png">所以不等式可化為

解不等式得,,即

又因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2013041419400711719281/SYS201304141940506328624476_DA.files/image009.png">,所以,即,

所以,所以,所以.   ………………7分

(II)可取1,2,3 ,4

的分布列為

1

2

3

4

p

.   ……………14分

考點(diǎn):分布列和數(shù)學(xué)期望,古典概型

點(diǎn)評:對于概率試題的求解,主要是能對于古典概型的事件空間準(zhǔn)確求解,同時能根據(jù)各個概率的取值,得到分布列,屬于中檔題。

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2013屆浙江桐鄉(xiāng)高級中學(xué)高二第二學(xué)期期中考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題

(本題滿分14分)

一個口袋內(nèi)有4個不同的紅球,6個不同的白球.

(1)從中任取4個球,紅球的個數(shù)不比白球少的取法有多少種?

(2)若取一個紅球記2分,取一個白球記1分,從中任取4個球,使總分不少于7分的取法有多少種?

 

查看答案和解析>>

同步練習(xí)冊答案