設(shè)等比數(shù)列{an}的首項(xiàng)為a,公比q>0且q≠1,前n項(xiàng)和為Sn.
(Ⅰ)當(dāng)a=1時(shí),S1+1,S2+2,S3+1三數(shù)成等差數(shù)列,求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)對任意正整數(shù)n,命題甲:Sn,(Sn+1+1),Sn+2三數(shù)構(gòu)成等差數(shù)列. 命題乙:Sn+1,(Sn+2+1),Sn+3三數(shù)構(gòu)成等差數(shù)列.求證:對于同一個(gè)正整數(shù)n,命題甲與命題乙不能同時(shí)為真命題.
解:(Ⅰ)∵數(shù)列{a
n}是首項(xiàng)為a=1,公比q>0且q≠1的等比數(shù)列,
∴
,∴S
1+1=1+1=2,S
2+2=1+q+2=q+3,S
3+1=1+q+q
2+1=2+q+q
2,
又∵S
1+1,S
2+2,S
3+1三數(shù)成等差數(shù)列,∴2(S
2+2)=(S
1+1)+(S
3+1),∴2(q+3)=2+2+q+q
2,化為q
2-q-2=0,
解得q=2,或q=-1,
∵q>0,∴q=2,∴
.
所以數(shù)列{a
n}的通項(xiàng)公式為
.
(Ⅱ)對任意正整數(shù)n,命題甲:S
n,(S
n+1+1),S
n+2三數(shù)構(gòu)成等差數(shù)列,?2(S
n+1+1)=S
n+S
n+2?a
n+2=a
n+1+2;
對任意正整數(shù)n,命題乙:S
n+1,(S
n+2+1),S
n+3三數(shù)構(gòu)成等差數(shù)列,?2(S
n+2+1)=S
n+1+S
n+3?a
n+3=a
n+2+2
若對于同一個(gè)正整數(shù)n,命題甲與命題乙同時(shí)為真命題,則a
n+3-a
n+2=a
n+2-a
n+1.
∴
,又
,
∴q
2-2q+1=0,∴q=1與已知q≠1相矛盾.
所以對于同一個(gè)正整數(shù)n,命題甲與命題乙不能同時(shí)為真命題.
分析:(Ⅰ)由已知條件S
1+1,S
2+2,S
3+1三數(shù)成等差數(shù)列,∴2(S
2+2)=(S
1+1)+(S
3+1),再由通項(xiàng)公式及前n項(xiàng)和公式及a=1,可求出q的值.
(Ⅱ)先假設(shè)對于同一個(gè)正整數(shù)n,命題甲與命題乙同時(shí)為真命題,由此可得出q=1,從而得出矛盾.
點(diǎn)評:本題綜合考查了等差數(shù)列與等比數(shù)列的通項(xiàng)公式及前n項(xiàng)和公式,熟練掌握以上有關(guān)知識是解決問題的關(guān)鍵.