定義域為D的函數(shù)f(x),其導函數(shù)為f′(x),若對?x∈D,均有f(x)<f′(x),則稱函數(shù)f(x)為D上的夢想函數(shù).
(1)已知函數(shù)f(x)=sinx+cosx,試判斷f(x)是否為其定義域上的夢想函數(shù),并說明理由;
(2)若函數(shù)g(x)=ax+a-1(a∈R,x∈(0,π))為其定義域上的夢想函數(shù),求a的取值范圍.
考點:導數(shù)的運算,利用導數(shù)研究函數(shù)的單調(diào)性
專題:導數(shù)的概念及應用
分析:(Ⅰ)按照夢想函數(shù)的定義舉反例即可;
(Ⅱ)求出g′(x)=a,由g(x)為(0,π)上為夢想函數(shù),得ax+a-1<a在x∈(0,π)上恒成立,分離出參數(shù)a后轉(zhuǎn)化為函數(shù)最值解決;
解答: 解:(Ⅰ)函數(shù)f(x)=sinx+cosx不是其定義域上的夢想函數(shù).
理由如下:f(x)=sinx+cosx定義域D=R,f'(x)=cosx-sinx,
存在x=
π
4
,使,f(
π
4
)>
故函數(shù)h(x)=sinx+cosx不是其定義域D=R上的夢想函數(shù).
(Ⅱ)g(x)=ax+a-1,g'(x)=a,
若函數(shù)g(x)=ax+a-1在x∈(0,π)上為夢想函數(shù),
則ax+a-1<a在x∈(0,π)上恒成立,即a<
1
x
在x∈(0,π)上恒成立,
因為在y=
1
x
在x∈(0,π)內(nèi)的值域為(
1
π
,+∞)
所以a≤
1
π
點評:本小題主要考查函數(shù)、導數(shù)等基礎(chǔ)知識,考查推理論證能力、運算求解能力,考查化歸與轉(zhuǎn)化思想、分類與整合思想、函數(shù)與方程思想、數(shù)形結(jié)合思想等.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

各項都是正數(shù)的等比數(shù)列{an}的公比q≠1,且a2,
1
2
a3,a1成等差數(shù)列,則
a2+a 3+a4
a3+a4+a5
的值為( 。
A、
1-
5
2
B、
5
+1
2
C、
5
-1
2
D、
5
+1
2
5
-1
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)y=tan(13x+14π)是( 。
A、周期為
13
的偶函數(shù)
B、周期為
13
的奇函數(shù)
C、周期為
π
13
的偶函數(shù)
D、周期為
π
13
的奇函數(shù)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)數(shù)列{an}的首項a1=
1
2
,且an+1=
1
2
an(n為偶數(shù))
an+
1
4
(n為奇數(shù))
,記bn=a2n-1-
1
4
(n∈N*)bn=a2n-1-
1
4
(n∈N*).
(1)求a2,a3;
(2)證明:{bn}是等比數(shù)列;
(3)求數(shù)列{
3n+1
bn
}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知復數(shù)z=1+i(i是虛數(shù)單位)
(1)若ω=z2+3
.
z
-1,求|ω|
(2)若
z2+az+b
z2-z+1
=1-i(a,b∈R),求a,b的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知傾斜角為
π
4
的直線f經(jīng)過點P(1,1).
(I)寫出直線l的參數(shù)方程;
(Ⅱ)設(shè)直線l與x2+y2=4相交于A,B兩點,求
1
|PA|
+
1
|PB|
的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知集合A={x|x2-4x-12<0},B={x|b-3<x<b+7},M={x|-4≤x<5},全集U=R.
(1)求A∩M; 
(2)若B∪(∁uM)=R,求實數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在四棱錐P-ABCD中,側(cè)面PCD⊥底面ABCD,PD⊥CD,底面ABCD是直角梯形,AB∥CD,∠ADC=90°,AB=AD=PD=1,CD=2.
(1)求證:BC⊥平面PBD;
(2)設(shè)Q為側(cè)棱PC的中點,求三棱錐Q-PBD的體積;
(3)若N是棱BC的中點,則棱PC上是否存在點M,使MN平行于平面PDA?若存在,求PM的長;若不存在請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=lnx-
ax
x+1

(1)若函數(shù)f(x)有極值,求實數(shù)a的取值范圍;
(2)當f(x)有兩個極值點(記為x1和x2)時,求證f(x1)+f(x2)≥
x+1
x
•[f(x)-x+1].

查看答案和解析>>

同步練習冊答案