一個(gè)均勻的正四面體的四個(gè)面上分別涂有1,2,3,4四個(gè)數(shù)字,現(xiàn)隨機(jī)投擲兩次,正四面體面朝下的數(shù)字分別為x1,x2,記ξ=(x1-3)2+(x2-3)2
(1)分別求出ξ取得最大值和最小值時(shí)的概率;
(2)求ξ的分布列及數(shù)學(xué)期望.
分析:(1)由題意知擲出點(diǎn)數(shù)x可能是:1,2,3,4.得到要用的代數(shù)式的值,得到ξ的所有取值為:0,1,2,4,5,8.理解變量取不同值時(shí)對(duì)應(yīng)的事件,做出概率.
(2)由(Ⅰ)知ξ的所有取值為:0,1,2,4,5,8,理解變量取不同值時(shí)對(duì)應(yīng)的事件,做出概率,寫出變量的分布列,求出期望,本題變量取值較多,解題時(shí)要注意運(yùn)算,避免出錯(cuò).
解答:解:(1)擲出點(diǎn)數(shù)x可能是:1,2,3,4.
則x-3分別得:-2,-1,0,1.
于是(x-3)2的所有取值分別為:0,1,4.
因此ξ的所有取值為:0,1,2,4,5,8.
當(dāng)x1=1且x2=1時(shí),ξ=(x1-3)2+(x2-3)2可取得最大值8,
此時(shí),P(ξ=8)=
1
4
×
1
4
=
1
16
;
當(dāng)x1=3且x2=3時(shí),ξ=(x1-3)2+(x2-3)2可取得最小值0.
此時(shí),P(ξ=0)=
1
4
×
1
4
=
1
16

P(ξ=0)=P(ξ=8)=
1
16
;

(2)由(Ⅰ)知ξ的所有取值為:0,1,2,4,5,8.
當(dāng)ξ=1時(shí),(x1,x2)的所有取值為(2,3)、(4,3)、(3,2)、(3,4).
P(ξ=1)=
4
16

當(dāng)ξ=2時(shí),(x1,x2)的所有取值為(2,2)、(4,4)、(4,2)、(2,4).
P(ξ=2)=
4
16
;
當(dāng)ξ=4時(shí),(x1,x2)的所有取值為(1,3)、(3,1).
P(ξ=4)=
2
16
;
當(dāng)ξ=5時(shí),(x1,x2)的所有取值為(2,1)、(1,4)、(1,2)、(4,1).
P(ξ=5)=
4
16

P(ξ=8)=
1
16

∴ξ的分布列為:
精英家教網(wǎng)
所以Eξ=
1
4
+2×
1
4
+4×
1
8
+5×
1
4
+8×
1
16
=3
點(diǎn)評(píng):概率教學(xué)的核心問題是讓學(xué)生了解隨機(jī)現(xiàn)象與概率的意義,加強(qiáng)與實(shí)際生活的聯(lián)系,以科學(xué)的態(tài)度評(píng)價(jià)身邊的一些隨機(jī)現(xiàn)象.適當(dāng)?shù)卦黾訉W(xué)生合作學(xué)習(xí)交流的機(jī)會(huì),盡量地讓學(xué)生自己舉出生活和學(xué)習(xí)中與統(tǒng)計(jì)有關(guān)的實(shí)例.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年湖北省武漢市華中師大一附中高二(上)數(shù)學(xué)寒假作業(yè)(解析版) 題型:解答題

一個(gè)均勻的正四面體的四個(gè)面上分別涂有1,2,3,4四個(gè)數(shù)字,現(xiàn)隨機(jī)投擲兩次,正四面體面朝下的數(shù)字分別為x1,x2,記ξ=(x1-3)2+(x2-3)2
(1)分別求出ξ取得最大值和最小值時(shí)的概率;
(2)求ξ的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012年安徽省合肥八中高考數(shù)學(xué)一模試卷(理科)(解析版) 題型:解答題

一個(gè)均勻的正四面體的四個(gè)面上分別涂有1,2,3,4四個(gè)數(shù)字,現(xiàn)隨機(jī)投擲兩次,正四面體面朝下的數(shù)字分別為x1,x2,記ξ=(x1-3)2+(x2-3)2
(1)分別求出ξ取得最大值和最小值時(shí)的概率;
(2)求ξ的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年安徽省合肥市肥西中學(xué)高考數(shù)學(xué)模擬試卷1(文理合卷)(解析版) 題型:解答題

一個(gè)均勻的正四面體的四個(gè)面上分別涂有1,2,3,4四個(gè)數(shù)字,現(xiàn)隨機(jī)投擲兩次,正四面體面朝下的數(shù)字分別為x1,x2,記ξ=(x1-3)2+(x2-3)2
(1)分別求出ξ取得最大值和最小值時(shí)的概率;
(2)求ξ的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年陜西省高考數(shù)學(xué)全真預(yù)測(cè)試卷(解析版) 題型:解答題

一個(gè)均勻的正四面體的四個(gè)面上分別涂有1,2,3,4四個(gè)數(shù)字,現(xiàn)隨機(jī)投擲兩次,正四面體面朝下的數(shù)字分別為x1,x2,記ξ=(x1-3)2+(x2-3)2
(1)分別求出ξ取得最大值和最小值時(shí)的概率;
(2)求ξ的分布列及數(shù)學(xué)期望.

查看答案和解析>>

同步練習(xí)冊(cè)答案