考點:數(shù)列的求和
專題:計算題,證明題,等差數(shù)列與等比數(shù)列
分析:(Ⅰ)當n=1時,求得a
1=-
,當n>1時,運用a
n=S
n-S
n-1,整理可得{a
n}為首項是-
,公比為-
的等比數(shù)列,由等比數(shù)列的通項公式即可得到;
(Ⅱ)求出數(shù)列{b
n}的通項,得到b
n>0,b
1=
,即可證得不等式的左邊,對通項整理變形,可得b
n<
=3
-2n+3
-2n+1,再由等比數(shù)列的求和公式,即可證得不等式的右邊.
解答:
(Ⅰ)解:當n=1時,a
1=s
1=
(a
1-1),
解得,a
1=-
,
當n>1時,a
n=S
n-S
n-1=
(a
n-1)-
(a
n-1-1)
即有a
n=-
a
n-1,
則數(shù)列{a
n}為首項是-
,公比為-
的等比數(shù)列,
即有a
n=a
1q
n-1=(-
)•(-
)
n-1=(-
)
n;
(Ⅱ)證明:b
n=
-
=
a2n-a2n-1 |
(1-a2n)(1-a2n-1) |
=
()2n+()2n-1 |
(1-()2n)(1+()2n-1) |
=
32n+32n-1 |
(32n-1)(32n-1+1) |
由于3
2n-1>0,則b
n>0,b
1=
=
,
T
n=b
1+b
2+…+b
n≥b
1=
;
b
n=
32n+32n-1 |
(32n-1)(32n-1+1) |
=
32n+32n-1 |
34n-1+32n-32n-1-1 |
<
=3
-2n+3
-2n+1,
又T
n=b
1+b
2+…+b
n<3
-2+3
-1+3
-4+3
-3+…+3
-2n+3
-2n+1=(3
-2+3
-4+…+3
-2n)+(3
-1+3
-3+…+3
-2n+1)
=
+
=
+
(1-3
-2n)=
-×3
-2n<
.
則原不等式成立.
點評:本題考查數(shù)列的通項和前n項和的關(guān)系,考查等比數(shù)列的通項和求和公式,考查放縮法證明數(shù)列不等式,考查推理能力,屬于中檔題.