若點M(x,y)是圓x2+y2=r2內(nèi)異于圓心的點,則直線xx+yy=r2與該圓的位置關(guān)系是   
【答案】分析:先利用點到直線的距離,求得圓心到直線xx+yy=r2的距離,根據(jù)P在圓內(nèi),判斷出 x2+y2<r,進而可知d>r,故可知直線和圓相離.
解答:解:圓心O(0,0)到直線xx+yy=r2的距離為d=
∵點M(x,y)在圓內(nèi),∴,則有d>r,
故直線和圓相離.
故答案為相離.
點評:本題的考點是直線與圓的位置關(guān)系,主要考查了直線與圓的位置關(guān)系.考查了數(shù)形結(jié)合的思想,直線與圓的位置關(guān)系的判定.解題的關(guān)鍵是看圓心到直線的距離與圓的半徑的大小關(guān)系.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知第一象限內(nèi)的點M到x軸、y軸的距離分別為5、4,點N的坐標(biāo)是(0,3),經(jīng)過點M、N的圓P的圓心P在x軸上.
(1)求圓P的方程   
(2)若點Q(x,y)在圓P上,求:3x+4y的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓M過定點D(0,2),圓心M在二次曲線y=
1
4
x2
上運動.
(1)若圓M與y軸相切,求圓M方程;
(2)已知圓M的圓心M在第一象限,半徑為
5
,動點Q(x,y)是圓M外一點,過點Q與 圓M相切的切線的長為3,求動點Q(x,y)的軌跡方程;
(3)若圓M與x軸交于A,B兩點,設(shè)|AD|=a,|BD|=b,求
b
a
的取值范圍?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年江蘇省鎮(zhèn)江市揚中二中高三(上)期末數(shù)學(xué)模擬試卷(解析版) 題型:解答題

圓錐曲線上任意兩點連成的線段稱為弦.若圓錐曲線上的一條弦垂直于其對稱軸,我們將該弦稱之為曲線的垂軸弦.已知點P(
x,y)、M(m,n)是圓錐曲線C上不與頂點重合的任意兩點,MN是垂直于x軸的一條垂軸弦,直線MP,NP分別交x軸于點E(xE,0)和點F(xF,0).
(Ⅰ)試用x,y,m,n的代數(shù)式分別表示xE和xF;
(Ⅱ)已知“若點P(x,y)是圓C:x2+y2=R2上的任意一點,MN是垂直于x軸的垂軸弦,直線MP、NP分別交x軸于點E(xE,0)和點F(xF,0),則”.類比這一結(jié)論,我們猜想:“若曲線C的方程為(如圖),則xE•xF也是與點M、N、P位置無關(guān)的定值”,請你對該猜想給出證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2009年上海市盧灣區(qū)高考數(shù)學(xué)二模試卷(文科)(解析版) 題型:解答題

若點M(x,y)是圓x2+y2=r2內(nèi)異于圓心的點,則直線xx+yy=r2與該圓的位置關(guān)系是   

查看答案和解析>>

同步練習(xí)冊答案