【題目】已知雙曲線的左、右焦點分別為、,是雙曲線上一點,且軸,若的內(nèi)切圓半徑為,則其漸近線方程是__________.
【答案】
【解析】分析:由題意可得A在雙曲線的右支上,由雙曲線的定義可得|AF1|﹣|AF2|=2a,設(shè)Rt△AF1F2內(nèi)切圓半徑為r,運用等積法和勾股定理,可得r=c﹣a,結(jié)合條件和漸近線方程,計算即可得到所求.
詳解:由點A在雙曲線上,且AF2⊥x軸,
可得A在雙曲線的右支上,
由雙曲線的定義可得|AF1|﹣|AF2|=2a,
設(shè)Rt△AF1F2內(nèi)切圓半徑為r,
運用面積相等可得S=|AF2||F1F2|
=r(|AF1|+|AF2|+|F1F2|),
由勾股定理可得|AF2|2+|F1F2|2=|AF1|2,
解得r=,
,即
∴漸近線方程是,
故答案為:.
科目:高中數(shù)學 來源: 題型:
【題目】雙曲線 =1(a>0,b>0)的左、右焦點分別為F1、F2離心率為e.過F2的直線與雙曲線的右支交于A、B兩點,若△F1AB是以A為直角頂點的等腰直角三角形,則e2的值是( )
A.1+2
B.3+2
C.4﹣2
D.5﹣2
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為了調(diào)查喜歡看書是否與性別有關(guān),某校調(diào)查小組就“是否喜歡看書”這個問題,在全校隨機調(diào)研了100名學生.
(1)完成下列列聯(lián)表:
喜歡看書 | 不喜歡看書 | 合計 | |
女生 | 15 | 50 | |
男生 | 25 | ||
合計 | 100 |
(2)能否在犯錯率不超過0.025的前提下認為“喜歡看書與性別有關(guān)”.
附:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(參考公式:,其中)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,過點P作圓O的割線PBA與切線PE,E為切點,連接AE、BE,∠APE的平分線與AE、BE分別交于點C、D,其中∠AEB=30°.
(1)求證:
(2)求∠PCE的大小.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設(shè)函數(shù)
(1)求的單調(diào)區(qū)間;
(2)若為整數(shù),且當時, 恒成立,其中為的導函數(shù),求的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在城市舊城改造中,某小區(qū)為了升級居住環(huán)境,擬在小區(qū)的閑置地中規(guī)劃一個面積為的矩形區(qū)域(如圖所示),按規(guī)劃要求:在矩形內(nèi)的四周安排寬的綠化,綠化造價為200元/,中間區(qū)域地面硬化以方便后期放置各類健身器材,硬化造價為100元/.設(shè)矩形的長為.
(1)設(shè)總造價(元)表示為長度的函數(shù);
(2)當取何值時,總造價最低,并求出最低總造價.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù) ,且在上單調(diào)遞增,且函數(shù)與的圖象恰有兩個不同的交點,則實數(shù)的取值范圍是( )
A. B. C. D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com