、如圖,ABCD是正方形,O是正方形的中心,PO底面ABCD,E是PC的中點(diǎn)。

求證:(1)PA∥平面BDE

(2)平面PAC平面BDE

 

【答案】

 見(jiàn)解析。

【解析】本題主要考查中位線定理、線面平行的判定定理和面面垂直的判定定理.考查立體幾何的基本定理和空間想象能力.

(1)先根據(jù)中位線定理得到OE∥AP,進(jìn)而再由線面平行的判定定理可得到PA∥平面BDE.

(2)先根據(jù)線面垂直的性質(zhì)定理得到PO⊥BD,結(jié)合AC⊥BD根據(jù)線面垂直的判定定理得到BD⊥平面PAC,從而根據(jù)面面垂直的判定定理得到平面PAC⊥平面BDE,得證.

證明(1)∵O是AC的中點(diǎn),E是PC的中點(diǎn),∴OE∥AP,

又∵OE平面BDE,PA平面BDE,∴PA∥平面BDE

(2)∵PO底面ABCD,∴POBD,又∵ACBD,且ACPO=O

∴BD平面PAC,而B(niǎo)D平面BDE,∴平面PAC平面BDE。

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知正四面體ABCD的棱長(zhǎng)為3cm.
(1)求證:AD⊥BC;
(2)已知點(diǎn)E是CD的中點(diǎn),點(diǎn)P在△ABC的內(nèi)部及邊界上運(yùn)動(dòng),且滿(mǎn)足EP∥平面ABD,試求點(diǎn)P的軌跡;
(3)有一個(gè)小蟲(chóng)從點(diǎn)A開(kāi)始按以下規(guī)則前進(jìn):在每一個(gè)頂點(diǎn)處等可能地選擇通過(guò)這個(gè)頂點(diǎn)的三條棱之一,并且沿著這條棱爬到盡頭,當(dāng)它爬了12cm之后,求恰好回到A點(diǎn)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,P是正四棱柱ABCD-A1B1C1D1上底面的中心,E是AB的中點(diǎn),AB=
2
AA1

(1)求證:A1E∥平面PBC;
(2)求直線PA與平面PBC所成角的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,已知正四棱錐V-ABCD中,AC與BD交于點(diǎn)M,VM是棱錐的高,若AC=8cm,VC=5cm,求正四棱錐V-ABCD的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,P—ABCD是正四棱錐,ABCD—A1B1C1D1是正方體,其中AB=2,PA= .

(1)求證:PA⊥B1D1;

(2)求平面PAD與平面BDD1B1所成的銳二面角的大小;

(3)求B1到平面PAD的距離.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2009年上海市浦東新區(qū)建平中學(xué)高考數(shù)學(xué)三模試卷(理科)(解析版) 題型:解答題

如圖,P是正四棱柱ABCD-A1B1C1D1上底面的中心,E是AB的中點(diǎn),
(1)求證:A1E∥平面PBC;
(2)求直線PA與平面PBC所成角的大。

查看答案和解析>>

同步練習(xí)冊(cè)答案