已知直線m,n和平面α,β滿足m⊥n,m⊥α,α⊥β,則( )
(A)n⊥β (B)n∥β
(C)n⊥α (D)n∥α或n?α
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時提升作業(yè)(三)第一章第三節(jié)練習(xí)卷(解析版) 題型:填空題
命題“對任意x∈R,|x-2|+|x-4|>3”的否定是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時提升作業(yè)(一)第一章第一節(jié)練習(xí)卷(解析版) 題型:選擇題
集合M={a,b},N={a+1,3},a,b為實數(shù),若M∩N={2},則M∪N=( )
(A){0,1,2} (B){0,1,3}
(C){0,2,3} (D){1,2,3}
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時提升作業(yè)四十四第七章第三節(jié)練習(xí)卷(解析版) 題型:選擇題
已知命題:①若點(diǎn)P不在平面α內(nèi),A,B,C三點(diǎn)都在平面α內(nèi),則P,A,B,C四點(diǎn)不在同一平面內(nèi);②兩兩相交的三條直線在同一平面內(nèi);③兩組對邊分別相等的四邊形是平行四邊形.其中正確命題的個數(shù)是( )
(A)0 (B)1 (C)2 (D)3
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時提升作業(yè)四十六第七章第五節(jié)練習(xí)卷(解析版) 題型:解答題
在如圖所示的幾何體中,四邊形ACC1A1是矩形,FC1∥BC,EF∥A1C1,∠BCC1=90°,點(diǎn)A,B,E,A1在一個平面內(nèi),AB=BC=CC1=2,AC=2.
證明:(1)A1E∥AB.
(2)平面CC1FB⊥平面AA1EB.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時提升作業(yè)四十八第七章第七節(jié)練習(xí)卷(解析版) 題型:解答題
如圖所示,在四棱錐P-ABCD中,PC⊥平面ABCD,PC=2,在四邊形ABCD中,∠B=∠C=90°,AB=4,CD=1,點(diǎn)M在PB上,PB=4PM,PB與平面ABCD成30°的角.
求證:(1)CM∥平面PAD.
(2)平面PAB⊥平面PAD.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時提升作業(yè)四十八第七章第七節(jié)練習(xí)卷(解析版) 題型:選擇題
已知=(1,5,-2),=(3,1,z),若⊥,=(x-1,y,-3),且BP⊥平面ABC,則實數(shù)x,y,z分別為( )
(A),-,4 (B),-,4
(C),-2,4 (D)4,,-15
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時提升作業(yè)四十五第七章第四節(jié)練習(xí)卷(解析版) 題型:選擇題
設(shè)α,β是兩個不同的平面,m,n是平面α內(nèi)的兩條不同直線,l1,l2是平面β內(nèi)的兩條相交直線,則α∥β的一個充分不必要條件是( )
(A)m∥β且l1∥α (B)m∥β且n∥l2
(C)m∥β且n∥β (D)m∥l1且n∥l2
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時提升作業(yè)四十三第七章第二節(jié)練習(xí)卷(解析版) 題型:選擇題
側(cè)面都是直角三角形的正三棱錐,底面邊長為a時,該三棱錐的全面積是( )
(A)a2 (B)a2
(C)a2 (D)a2
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com