【題目】設(shè)和是雙曲線上的兩點(diǎn),線段的中點(diǎn)為,直線不經(jīng)過(guò)坐標(biāo)原點(diǎn).
(1)若直線和直線的斜率都存在且分別為和,求證:;
(2)若雙曲線的焦點(diǎn)分別為、,點(diǎn)的坐標(biāo)為,直線的斜率為,求由四點(diǎn)、、、所圍成四邊形的面積.
【答案】(1)見(jiàn)解析;(2)
【解析】
(1)法一:設(shè)不經(jīng)過(guò)點(diǎn)的直線方程為,與雙曲線方程聯(lián)立,利用中點(diǎn)坐標(biāo)表示,再求;法二:利用點(diǎn)差法表示;
(2)先由已知求得雙曲線方程和直線的方程,由條件表示四邊形的面積;令解,利用的中點(diǎn)是,直接求點(diǎn)的坐標(biāo),再表示四邊形的面積.
(1)證明:法1:設(shè)不經(jīng)過(guò)點(diǎn)的直線方程為,代入雙曲線方程得:.
設(shè)坐標(biāo)為,坐標(biāo)為,中點(diǎn)坐標(biāo)為,則,,
,,所以,,.
法2:設(shè)、,中點(diǎn),則,且,
(1)﹣(2)得:.
因?yàn),直線和直線的斜率都存在,所以,
等式兩邊同除以,得:,即.
(2)由已知得,求得雙曲線方程為,直線斜率為,
直線方程為,代入雙曲線方程可解得,中點(diǎn)坐標(biāo)為.
面積.
另解:線段中點(diǎn)在直線上.所以由中點(diǎn),可得點(diǎn)的坐標(biāo)為,代入雙曲線方程可得,即,解得(),所以.面積.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】經(jīng)過(guò)坐標(biāo)原點(diǎn)的兩條直線與橢圓:分別相交于點(diǎn)、和點(diǎn)、,其中直線經(jīng)過(guò)的左焦點(diǎn),直線經(jīng)過(guò)的右焦點(diǎn).當(dāng)直線不垂直于坐標(biāo)軸時(shí),與的斜率乘積為.
(1)求橢圓的方程;
(2)求四邊形面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線,圓.
(Ⅰ)是拋物線的焦點(diǎn),是拋物線上的定點(diǎn),,求拋物線的方程;
(Ⅱ)在(Ⅰ)的條件下,過(guò)點(diǎn)的直線與圓相切,設(shè)直線交拋物線于,兩點(diǎn),則在軸上是否存在點(diǎn)使?若存在,求出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列是各項(xiàng)均為正數(shù)的等差數(shù)列.
(1)若,且成等比數(shù)列,求數(shù)列的通項(xiàng)公式;
(2)在(1)的條件下,數(shù)列的前和為,設(shè),若對(duì)任意的,不等式恒成立,求突數(shù)的最小值:
(3)若數(shù)列中有兩項(xiàng)可以表示位某個(gè)整數(shù)的不同次冪,求證:數(shù)列中存在無(wú)窮多項(xiàng)構(gòu)成等比數(shù)列.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=lnx﹣x+1.
(1)求曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程:
(2)若非零實(shí)數(shù)a使得f(x)axax2對(duì)x∈[1,+∞)恒成立,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】將一枚質(zhì)地均勻的硬幣向上拋擲三次,下列兩個(gè)事件中,是對(duì)立事件的是( )
A.事件:“恰有兩次正面向上”,事件:“恰有兩次反面向上”
B.事件:“恰有兩次正面向上”,事件:“恰有一次正面向上”
C.事件:“至少有一次正面向上”,事件:“至多一次正面向上”
D.事件:“至少有一次正面向上”,事件:“恰有三次反面向上”
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】近年來(lái),智能手機(jī)的更新?lián)Q代極其頻繁和快速,而青少年對(duì)新事物的追求更是強(qiáng)烈,為了調(diào)查大學(xué)生更換手機(jī)的時(shí)間,現(xiàn)對(duì)某大學(xué)中的大學(xué)生使用一部手機(jī)的年限進(jìn)行了問(wèn)卷調(diào)查,并從參與調(diào)查的大學(xué)生中抽取了男生、女生各人進(jìn)行抽樣分析,制成如下的頻率分布直方圖.
(1)根據(jù)頻率分布直方圖,估計(jì)男大學(xué)生使用手機(jī)年限的中位數(shù)和女大學(xué)生使用手機(jī)年限的眾數(shù);
(2)根據(jù)頻率分布直方圖,求出男大學(xué)生和女大學(xué)生使用手機(jī)年限的平均值,并分析比較男大學(xué)生和女大學(xué)生哪個(gè)群體更換手機(jī)的頻率更高.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】名學(xué)生某次數(shù)學(xué)考試成績(jī)(單位:分)的頻率分布直方圖如圖.
(1)求頻率分布直方圖中的值;
(2)估計(jì)總體中成績(jī)落在中的學(xué)生人數(shù);
(3)根據(jù)頻率分布直方圖估計(jì)名學(xué)生數(shù)學(xué)考試成績(jī)的眾數(shù),中位數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】重慶市第八中學(xué)校為了解學(xué)生喜愛(ài)運(yùn)動(dòng)是否與性別有關(guān),從全校學(xué)生中隨機(jī)抽取50名學(xué)生進(jìn)行問(wèn)卷調(diào)查,得到如圖所示的列聯(lián)表.
喜愛(ài)運(yùn)動(dòng) | 不喜愛(ài)運(yùn)動(dòng) | 合計(jì) | |
男生 | 22 | 8 | 30 |
女生 | 8 | 12 | 20 |
合計(jì) | 30 | 20 | 50 |
附:,
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(1)能否有97.5%以上的把握認(rèn)為“喜愛(ài)運(yùn)動(dòng)”與“性別”有關(guān);
(2)用分層抽樣的方法從被調(diào)查的20名女生中抽取5名進(jìn)行問(wèn)卷調(diào)查,求抽取喜愛(ài)運(yùn)動(dòng)的女生、不喜愛(ài)運(yùn)動(dòng)的女生各有多少的人;
(3)在(2)抽取的女生中,隨機(jī)選出2人進(jìn)行座談,求至少有1名是喜愛(ài)運(yùn)動(dòng)的女生的概率.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com