【題目】如圖,三棱錐中,兩兩垂直,,,分別是的中點.
(1)證明:平面面;
(2)求直線與平面所成角的正弦值.
【答案】(1)證明見解析(2)
【解析】
(1)由中位線定理證得,由線面平行的判定定理說明平面,同理可證平面,再由面面平行的判定定理說明平面面;
(2)由三棱錐中,兩兩垂直,即可以為坐標(biāo)原點,以為坐標(biāo)軸建立空間直角坐標(biāo)系,分別表示點P,A,B,F的坐標(biāo),進而求得與面的法向量,設(shè)與面所成角為,由算得答案.
(1)證明:∵分別是的中點,
∴,又平面,平面
∴平面,
同理可得:平面,
又平面,平面,,
∴平面平面.
(2)以為坐標(biāo)原點,以為坐標(biāo)軸建立空間直角坐標(biāo)系如圖所示:
則,,,,
∴,,,
設(shè)平面的法向量,則,
∴,令可得.
∴.
設(shè)與面所成角為,則.
∴與面所成角的正弦值為.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),.
(1)若對任意,都有成立,求實數(shù)的取值范圍;
(2)若存在,使成立,求實數(shù)的取值范圍;
(3)若對任意,都有成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在直三棱柱中,,,,.
(1)證明: 平面;
(2)若是棱的中點,在棱上是否存在一點,使DE∥平面?證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某超市在節(jié)日期間進行有獎促銷,凡在該超市購物滿400元的顧客,將獲得一次摸獎機會,規(guī)則如下:獎盒中放有除顏色外完全相同的1個紅球,1個黃球,1個白球和1個黑球.顧客不放回的每次摸出1個球,若摸到黑球則停止摸獎,否則就繼續(xù)摸球.規(guī)定摸到紅球獎勵20元,摸到白球或黃球獎勵10元,摸到黑球不獎勵.
(1)求1名顧客摸球2次停止摸獎的概率;
(2)記為1名顧客5次摸獎獲得的獎金數(shù)額,求隨機變量的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知四棱錐PABCD的底面ABCD是矩形,PA⊥底面ABCD,點E、F分別是棱PC、PD的中點,則
①棱AB與PD所在直線垂直;
②平面PBC與平面ABCD垂直;
③△PCD的面積大于△PAB的面積;
④直線AE與直線BF是異面直線.
以上結(jié)論正確的是________.(寫出所有正確結(jié)論的序號)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知,B為AC的中點,分別以AB,AC為直徑在AC的同側(cè)作半圓,M,N分別為兩半圓上的動點不含端點A,B,,且,則的最大值為______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,將一個邊長為的正三角形分成個全等的正三角形,第一次挖去中間的一個小三角形,將剩下的個小正三角形,分別再從中間挖去一個小三角形,保留它們的邊,重復(fù)操作以上的做法,得到的集合為希爾賓斯基三角形.設(shè)是前次挖去的小三角形面積之和(如是第次挖去的中間小三角形面積,是前次挖去的個小三角形面積之和),則 _____________ , __________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】黨的十九大明確把精準(zhǔn)脫貧作為決勝全面建成小康社會必須打好的三大攻堅戰(zhàn)之一.為堅決打贏脫貧攻堅戰(zhàn),某幫扶單位為幫助定點扶貧村脫貧,堅持扶貧同扶智相結(jié)合,此幫扶單位考察了甲、乙兩種不同的農(nóng)產(chǎn)品加工生產(chǎn)方式,現(xiàn)對兩種生產(chǎn)方式的產(chǎn)品質(zhì)量進行對比,其質(zhì)量按測試指標(biāo)可劃分為:指標(biāo)在區(qū)間的為優(yōu)等品;指標(biāo)在區(qū)間的為合格品,現(xiàn)分別從甲、乙兩種不同加工方式生產(chǎn)的農(nóng)產(chǎn)品中,各自隨機抽取100件作為樣本進行檢測,測試指標(biāo)結(jié)果的頻數(shù)分布表如下:
甲種生產(chǎn)方式:
指標(biāo)區(qū)間 | ||||||
頻數(shù) | 5 | 15 | 20 | 30 | 15 | 15 |
乙種生產(chǎn)方式:
指標(biāo)區(qū)間 | ||||||
頻數(shù) | 5 | 15 | 20 | 30 | 20 | 10 |
(1)在用甲種方式生產(chǎn)的產(chǎn)品中,按合格品與優(yōu)等品用分層抽樣方式,隨機抽出5件產(chǎn)品,①求這5件產(chǎn)品中,優(yōu)等品和合格品各多少件;②再從這5件產(chǎn)品中,隨機抽出2件,求這2件中恰有1件是優(yōu)等品的概率;
(2)所加工生產(chǎn)的農(nóng)產(chǎn)品,若是優(yōu)等品每件可售55元,若是合格品每件可售25元.甲種生產(chǎn)方式每生產(chǎn)一件產(chǎn)品的成本為15元,乙種生產(chǎn)方式每生產(chǎn)一件產(chǎn)品的成本為20元.用樣本估計總體比較在甲、乙兩種不同生產(chǎn)方式下,該扶貧單位要選擇哪種生產(chǎn)方式來幫助該扶貧村來脫貧?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com