已知直線l:x+y-3=0與圓C:(x-1)2+(y+2)2=2則圓C上各點到l距離的最大值為
3
2
3
2
_.
分析:求出圓心C到直線的距離,再加上半徑,即為C上各點到l的距離的最大值.
解答:解:由題意,圓心C到直線的距離為d=
|1-2-3|
2
=2
2

∵圓C:(x-1)2+(y+2)2=2的半徑為
2

∴C上各點到l的距離的最大值為2
2
+
2
=3
2

故答案為:3
2
點評:本題考查直線與圓的位置關系,考查學生的計算能力,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知直線l:x-y+4=0與圓C:(x-1)2+(y-1)2=2,則C上各點到l的距離的最小值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知直線l:x-y+4=0與圓C:
x=1+2cosθ
y=1+2sinθ
,則C上各點到l的距離的最小值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•廣州一模)已知直線l:x+y=m經過原點,則直線l被圓x2+y2-2y=0截得的弦長是(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知直線l:x-y+4=0與圓C:x2+y2-2x-2y=0,則圓C上各點到l的距離的最小值為
2
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2007•河北區(qū)一模)已知橢圓C的方程為 
x2
a2
+
y2
b2
=1 
(a>b>0),過其左焦點F1(-1,0)斜率為1的直線交橢圓于P、Q兩點.
(Ⅰ)若
OP
+
OQ
a
=(-3,1)共線,求橢圓C的方程;
(Ⅱ)已知直線l:x+y-
1
2
=0,在l上求一點M,使以橢圓的焦點為焦點且過M點的雙曲線E的實軸最長,求點M的坐標和此雙曲線E的方程.

查看答案和解析>>

同步練習冊答案