設(shè)函數(shù)f(x)=x2-2ax+b(a,b∈R),則“f(x)=0在區(qū)間[1,2]有兩個不同的實根”是“1<a<2”的( 。
A、充分不必要條件
B、必要不充分條件
C、充要條件
D、既不充分也不必要條件
考點:必要條件、充分條件與充要條件的判斷
專題:簡易邏輯
分析:首先,根據(jù)方程f(x)=0在區(qū)間[1,2]有兩個不同的實根,得到
f(1)≥0
f(2)≥0
1<a<2
a2-b>0
,然后,進(jìn)一步判斷.
解答: 解:∵f(x)=x2-2ax+b(a,b∈R),
則f(x)=0在區(qū)間[1,2]有兩個不同的實根,
f(1)≥0
f(2)≥0
1<a<2
a2-b>0

1-2a+b≥0
4-4a+b≥0
1<a<2
a2-b>0
,
∴“f(x)=0在區(qū)間[1,2]有兩個不同的實根”是“1<a<2”的充分不必要條件.
故選:A.
點評:本題重點考查了一元二次方程的根的分布問題,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如果一個幾何體的三視圖如圖所示(單位長度:cm),則此幾何體的體積是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓x2-x+y2=6經(jīng)過雙曲線
x2
a2
-
y2
b2
=1(a,b>0)的左頂點和右焦點,則雙曲線的離心率為( 。
A、
3
2
B、2
C、
3
D、
2
3
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線mx+(1-n)y+1=0(m>0,n>0)和直線x+2y+1=0平行,則
1
m
+
1
n
的最小值是( 。
A、2
2
B、3+2
2
C、4
2
D、3+
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

拋物線x2=4y的焦點到雙曲線y2-
x2
4
=1的漸近線的距離等于( 。
A、
5
B、
5
5
C、
2
5
5
D、
5
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=xsinx在區(qū)間[0,4]上的零點個數(shù)( 。
A、0B、1C、2D、3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=(asinx+bcosx)•e-x在x=
π
6
處有極值,則函數(shù)y=asinx+bcosx的圖象可能是( 。
A、
B、
C、
D、

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知公差不為0的等差數(shù)列{an}的首項a1=2,且
1
a1
,
1
a2
,
1
a4
成等比數(shù)列.
(1)求數(shù)列{an}的通項公式;
(2)若數(shù)列{bn}滿足b1+2b2+22b3+…+2n-1bn=an,求數(shù)列{nbn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知正項等比數(shù)列{an}的前n項和為Sn,公比為q,若
q(S6-S3)
S9-S6
=
1
4
,且10是a2,a4的等差中項.
(1)求{an}的通項公式;
(2)數(shù)列{bn}滿足bn=
n
an
,記數(shù)列{bn}的前n項和為Tn,若對于任意的n∈N*,恒有T2n>(-1)n-1t-
2n
4n
,試求t的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案