【題目】定義在上的函數(shù)對任意的,滿足條件: ,且當時, .

(1)求的值;

(2)證明:函數(shù)上的單調(diào)增函數(shù);

(3)解關(guān)于的不等式.

【答案】(Ⅰ). (Ⅱ)見解析;(Ⅲ) .

【解析】試題分析:(1)由題意y=f(x)對任意的x,y∈R,關(guān)系式成立,采用賦值法,可得f(0)的值;
(2)利用定義證明其單調(diào)性.
(3)利用單調(diào)性及f(0)的值,求解不等式即可.

試題解析:

(Ⅰ)由題意:定義在R上的函數(shù)對任意的,

滿足條件: ,

,由,解得.

(Ⅱ)證明:設(shè) ,則

由題意知,

所以

,

,

所以函數(shù)是R上的單調(diào)增函數(shù).

(Ⅲ)解:由(Ⅰ)(Ⅱ)可知函數(shù)是R上的單調(diào)增函數(shù),且,

不等式 ,即 ,

,解得.

所以不等式的解集為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,底面為菱形,,的中點.

(1),求證:;

(2),且,點在線段上,試確定點的位置,使二面角大小為,并求出的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩企業(yè)生產(chǎn)同一種型號零件,按規(guī)定該型號零件的質(zhì)量指標值落在內(nèi)為優(yōu)質(zhì)品.從兩個企業(yè)生產(chǎn)的零件中各隨機抽出了500件,測量這些零件的質(zhì)量指標值,得結(jié)果如下表:

甲企業(yè):

乙企業(yè):

(1)已知甲企業(yè)的500件零件質(zhì)量指標值的樣本方差,該企業(yè)生產(chǎn)的零件質(zhì)量指標值服從正態(tài)分布,其中近似為質(zhì)量指標值的樣本平均數(shù)(注:求時,同一組數(shù)據(jù)用該區(qū)間的中點值作代表),近似為樣本方差,試根據(jù)該企業(yè)的抽樣數(shù)據(jù),估計所生產(chǎn)的零件中,質(zhì)量指標值不低于71.92的產(chǎn)品的概率.(精確到0.001)

(2)由以上統(tǒng)計數(shù)據(jù)完成下面列聯(lián)表,并問能否在犯錯誤的概率不超過0.01的前提下,認為“兩個分廠生產(chǎn)的零件的質(zhì)量有差異”.

附注:

參考數(shù)據(jù):

參考公式: , ,

.

0.50

0.40

0.25

0.15

0.10

0.05

0.025

0.010

0.005

0.001

0.455

0.708

1.323

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】近幾年來,我國許多地區(qū)經(jīng)常出現(xiàn)干旱現(xiàn)象,為抗旱經(jīng)常要進行人工降雨,現(xiàn)由天氣預(yù)報得知,某地在未來5天的指定時間的降雨概率是:前3天均為,后2天均為,5天內(nèi)任何一天的該指定時間沒有降雨,則在當天實行人工降雨,否則,當天不實施人工降雨.

(1)求至少有1天需要人工降雨的概率;

(2)求不需要人工降雨的天數(shù)的分布列和期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了弘揚民族文化,某校舉行了“我愛國學(xué),傳誦經(jīng)典”考試,并從中隨機抽取了100名考生的成績(得分均為整數(shù),滿足100分)進行統(tǒng)計制表,其中成績不低于80分的考生被評為優(yōu)秀生,請根據(jù)頻率分布表中所提供的數(shù)據(jù),用頻率估計概率,回答下列問題.

分組

頻數(shù)

頻率

5

0.05

0.20

35

25

0.25

15

0.15

合計

100

1.00

(1)求的值及隨機抽取一考生恰為優(yōu)秀生的概率;

(2)按頻率分布表中的成績分組,采用分層抽樣抽取20人參加學(xué)校的“我愛國學(xué)”宣傳活動,求其中優(yōu)秀生的人數(shù);

(3)在第(2)問抽取的優(yōu)秀生中指派2名學(xué)生擔任負責人,求至少一人的成績在的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一個盒子內(nèi)裝有8張卡片,每張卡片上面寫著1個數(shù)字,這8個數(shù)字各不相同,且奇數(shù)有3個,偶數(shù)有5個.每張卡片被取出的概率相等.

(Ⅰ)如果從盒子中一次隨機取出2張卡片,并且將取出的2張卡片上的數(shù)字相加得到一個新數(shù),求所得新數(shù)是偶數(shù)的概率;

(Ⅱ)現(xiàn)從盒子中一次隨機取出1張卡片,每次取出的卡片都不放回盒子,若取出的卡片上寫著的數(shù)是偶數(shù)則停止取出卡片,否則繼續(xù)取出卡片.設(shè)取出了次才停止取出卡片,求的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在等腰直角三角形中, , 的中點,點上,且,現(xiàn)沿折起到的位置,使,點上,且.

(1)求證: 平面

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】冬季晝夜溫差大小與某反季節(jié)大豆新品種發(fā)芽多少之間有關(guān)系,某農(nóng)科所對此關(guān)系進行了調(diào)查分析,他們分別記錄了12月1日至12月5日的每天晝夜溫差與實驗室每天100顆種子中的發(fā)芽數(shù),得到如下資料:

日期

12月1日

12月2日

12月3日

12月4日

12月5日

溫差

10

11

13

12

8

發(fā)芽數(shù)

23

25

30

26

16

該農(nóng)科所確定的研究方案是:先從這五組數(shù)據(jù)中選取2組,用剩下的3組數(shù)據(jù)求線性回歸方程,再對被選取的2組數(shù)據(jù)進行檢驗.

(1)求選取的2組數(shù)據(jù)恰好是不相鄰2天數(shù)據(jù)的概率;

(2)若選取的是12月1日與12月5日的兩組數(shù)據(jù),請根據(jù)12月2日至12月4日的數(shù)據(jù),求出關(guān)于的線性回歸方程;

(3)若由線性回歸方程得到的估計數(shù)據(jù)與所選出的檢驗數(shù)據(jù)的誤差均不超過2顆,則認為得到的線性回歸方程是可靠的,試問(2)中所得的線性回歸方程是否可靠?

(參考公式: ,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】現(xiàn)有4個人參加某娛樂活動,該活動有甲、乙兩個游戲可供參加者選擇,為增加趣味性,約定:每個人通過擲一枚質(zhì)地均勻的骰子決定自己去參加哪個游戲,擲出點數(shù)為1或2的人去參加甲游戲,擲出點數(shù)大于2的人去參加乙游戲.

(1) 求出4個人中恰有2個人去 參加甲游戲的概率;

(2)求這4個人中去參加甲游戲人數(shù)大于去參加乙游戲的人數(shù)的概率;

(3)用分別表示這4個人中去參加甲、乙游戲的人數(shù),記,求隨機變量的分布列與數(shù)學(xué)期望

查看答案和解析>>

同步練習(xí)冊答案