【題目】南北朝時(shí)代的偉大數(shù)學(xué)家祖暅在數(shù)學(xué)上有突出貢獻(xiàn),他在實(shí)踐的基礎(chǔ)上提出祖暅原理:“冪勢(shì)既同,則積不容異”.其含義是:夾在兩個(gè)平行平面之間的兩個(gè)幾何體,被平行于這兩個(gè)平面的任意平面所截,如果截得的兩個(gè)截面的面積總相等,那么這兩個(gè)幾何體的體積相等,如圖,夾在兩個(gè)平行平面之間的兩個(gè)幾何體的體積分別為,被平行于這兩個(gè)平面的任意平面截得的兩個(gè)截面的面積分別為,則“總相等”是“相等”的( )
A.充分不必要條件B.必要不充分條件
C.充分必要條件D.既不充分也不必要條件
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,菱形ABCD中,,,O為線段CD的中點(diǎn),將沿BO折到 的位置,使得,E為的中點(diǎn).
(1)求證:;
(2)求直線AE與平面所成角的正弦值
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在三棱柱中,側(cè)面為菱形,,,側(cè)面為正方形,平面平面.點(diǎn)為線段的中點(diǎn),點(diǎn)在線段上,且.
(1)證明:平面平面;
(2)求直線與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在某外國(guó)語(yǔ)學(xué)校舉行的(高中生數(shù)學(xué)建模大賽)中,參與大賽的女生與男生人數(shù)之比為,且成績(jī)分布在,分?jǐn)?shù)在以上(含)的同學(xué)獲獎(jiǎng).按女生、男生用分層抽樣的方法抽取人的成績(jī)作為樣本,得到成績(jī)的頻率分布直方圖如圖所示.
(Ⅰ)求的值,并計(jì)算所抽取樣本的平均值(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表);
(Ⅱ)填寫下面的列聯(lián)表,并判斷在犯錯(cuò)誤的概率不超過的前提下能否認(rèn)為“獲獎(jiǎng)與女生、男生有關(guān)”.
女生 | 男生 | 總計(jì) | |
獲獎(jiǎng) | |||
不獲獎(jiǎng) | |||
總計(jì) | |||
附表及公式:
其中,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】每年的3月12日是植樹節(jié),某公司為了動(dòng)員職工積極參加植樹造林,在植樹節(jié)期間開展植樹有獎(jiǎng)活動(dòng),設(shè)有甲、乙兩個(gè)摸獎(jiǎng)箱,每位植樹者植樹每滿30棵獲得一次甲箱內(nèi)摸獎(jiǎng)機(jī)會(huì),植樹每滿50棵獲得一次乙箱內(nèi)摸獎(jiǎng)機(jī)會(huì),每箱內(nèi)各有10個(gè)球(這些球除顏色外全相同),甲箱內(nèi)有紅、黃、黑三種顏色的球,其中個(gè)紅球,個(gè)黃球,5個(gè)黑球,乙箱內(nèi)有4個(gè)紅球和6個(gè)黃球,每次摸一個(gè)球后放回原箱,摸得紅球獎(jiǎng)100元,黃球獎(jiǎng)50元,摸得黑球則沒有獎(jiǎng)金.
(1)經(jīng)統(tǒng)計(jì),每人的植樹棵數(shù)服從正態(tài)分布,若其中有200位植樹者參與了抽獎(jiǎng),請(qǐng)估計(jì)植樹的棵數(shù)在區(qū)間內(nèi)并中獎(jiǎng)的人數(shù)(結(jié)果四舍五入取整數(shù));
附:若,則,
.
(2)若,某位植樹者獲得兩次甲箱內(nèi)摸獎(jiǎng)機(jī)會(huì),求中獎(jiǎng)金額(單位:元)的分布列;
(3)某人植樹100棵,有兩種摸獎(jiǎng)方法,
方法一:三次甲箱內(nèi)摸獎(jiǎng)機(jī)會(huì);
方法二:兩次乙箱內(nèi)摸獎(jiǎng)機(jī)會(huì);
請(qǐng)問:這位植樹者選哪一種方法所得獎(jiǎng)金的期望值較大.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,過點(diǎn)的直線l與拋物線交于A,B兩點(diǎn),以AB為直徑作圓,記為,與拋物線C的準(zhǔn)線始終相切.
(1)求拋物線C的方程;
(2)過圓心M作x軸垂線與拋物線相交于點(diǎn)N,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時(shí),求函數(shù)在處的切線方程;
(2)若函數(shù)在定義域上單調(diào)增,求的取值范圍;
(3)若函數(shù)在定義域上不單調(diào),試判定的零點(diǎn)個(gè)數(shù),并給出證明過程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在長(zhǎng)方體中,是的中點(diǎn),點(diǎn)是上一點(diǎn),,,.動(dòng)點(diǎn)在上底面上,且滿足三棱錐的體積等于1,則直線與所成角的正切值的最大值為( )
A.B.C.D.2
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com