(2012•孝感模擬)某校高一(2)班共有60名同學(xué)參加期末考試,現(xiàn)將其數(shù)學(xué)學(xué)科成績(jī)(均為整數(shù))分成六個(gè)分?jǐn)?shù)段[40,50),[50,60),…,[90,100],畫出如右圖所示的部分頻率分布直方圖,請(qǐng)觀察圖形信息,回答下列問(wèn)題:
(I )求7O~80分?jǐn)?shù)段的學(xué)生人數(shù);
(II)估計(jì)這次考試中該學(xué)科的優(yōu)分率(80分及以上為優(yōu)分);
(III)現(xiàn)根據(jù)本次考試分?jǐn)?shù)分成的六段(從低分段到高分段依次為第一組、第二組、…、第六組),為提高本班數(shù)學(xué)整體成績(jī),決定組與組之間進(jìn)行幫扶學(xué)習(xí).若選出的兩組分?jǐn)?shù)之差大于30分(以分?jǐn)?shù)段為依據(jù),不以具體學(xué)生分?jǐn)?shù)為依據(jù)),則稱這兩組為“最佳組合”,試求選出的兩組為“最佳組合”的概率.
分析:(I )7O~80分?jǐn)?shù)段的學(xué)生人數(shù) N=60×[1-(0.005+0.010+2×0.015+0.025)×10],運(yùn)算求得結(jié)果.
(II)估計(jì)這次考試中該學(xué)科的優(yōu)分率為 (0.025+0.005)×10.
(III)所有的組合數(shù)有15個(gè),其中,“最佳組合”有6個(gè),由此求得選出的兩組為“最佳組合”的概率為
6
15
解答:解:(I )7O~80分?jǐn)?shù)段的學(xué)生人數(shù) N=60×[1-(0.005+0.010+2×0.015+0.025)×10]=18.
(II)估計(jì)這次考試中該學(xué)科的優(yōu)分率為 (0.025+0.005)×10=0.3.
(III)所有的組合數(shù)有:(1,2)、(1,3)、(1,4)、(1,5)、(1,6)、(2,3)、(2,4)、(2,5)、(2,6)、(3,4)、
(3,5)、(3,6)、(4,5)、(4,6)、(5,6),共15個(gè),
其中,“最佳組合”有:(1,4)、(1,5)、(1,6)、(2,5)、(2,6)、(3,6),共6個(gè),
∴選出的兩組為“最佳組合”的概率為
6
15
=
2
5
點(diǎn)評(píng):本題考查古典概型問(wèn)題,頻率分步直方圖的應(yīng)用,可以列舉出試驗(yàn)發(fā)生包含的事件和滿足條件的事件,應(yīng)用列舉法來(lái)解題是這一部分的最主要思想,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•孝感模擬)已知cos(α+
π
6
)-sinα=
2
3
3
,則sin(α-
6
)的值是
2
3
2
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•孝感模擬)某公司生產(chǎn)一種產(chǎn)品,每年需投入固定成本0.5萬(wàn)元,此外每生產(chǎn)1百件這樣的產(chǎn)品,還需增加投入0.25萬(wàn)元,經(jīng)市場(chǎng)調(diào)查知這種產(chǎn)品年需求量為5百件,產(chǎn)品銷售數(shù)量為t(百件)時(shí),銷售所得的收入為(5t-
12
t2)
萬(wàn)元.
(1)該公司這種產(chǎn)品的年生產(chǎn)量為x百件,生產(chǎn)并銷售這種產(chǎn)品所得到的利潤(rùn)關(guān)于當(dāng)年產(chǎn)量x的函數(shù)為f(x),求f(x).
(2)當(dāng)該公司的年產(chǎn)量為多少件時(shí),當(dāng)年所獲得的利潤(rùn)最大.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•孝感模擬)在△ABC中,∠A=90°,且
AB
BC
=-1,則邊AB的長(zhǎng)為
1
1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•孝感模擬)如圖,在A、B間有四個(gè)焊接點(diǎn),若焊接點(diǎn)脫落,而可能導(dǎo)致電路不通,如今發(fā)現(xiàn)A、B之間線路不通,則焊接點(diǎn)脫落的不同情況有(  )

查看答案和解析>>

同步練習(xí)冊(cè)答案