精英家教網 > 高中數學 > 題目詳情

(本題滿分12分)已知向量.

(1)當時,求的值;

(2)設函數,已知在△ABC中,內角A、BC的對邊分別為,若,求 ()的取值范圍.

 

【答案】

(1);(2).

【解析】本試題主要是考查了三角函數的化簡以及關于解三角形的綜合運用

第一問中,利用向量共線,然后得到三角函數關系式,從而得到角x的正切值。將所求的化簡為關于正切值的函數表達式,得到。

第二問中,利用三角函數得到

然后利用角的取值范圍,結合三角函數的值域得到結論。

解:(1)  …………2分

      …………6分

   (2)

由正弦定理得      …………………9分

,

 所以                --------------------12分

 

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

( 本題滿分12分 )
已知函數f(x)=cos4x-2sinxcosx-sin4x
(I)求f(x)的最小正周期;
(II)若x∈[0,
π2
]
,求f(x)的最大值,最小值.

查看答案和解析>>

科目:高中數學 來源:安徽省合肥一中、六中、一六八中學2010-2011學年高二下學期期末聯考數學(理 題型:解答題

(本題滿分12分)已知△的三個內角、所對的邊分別為、、.,且.(1)求的大;(2)若.求.

查看答案和解析>>

科目:高中數學 來源:2011屆本溪縣高二暑期補課階段考試數學卷 題型:解答題

(本題滿分12分)已知各項均為正數的數列
的等比中項。
(1)求證:數列是等差數列;(2)若的前n項和為Tn,求Tn。

查看答案和解析>>

科目:高中數學 來源:2010-2011學年廣東省揭陽市高三調研檢測數學理卷 題型:解答題

(本題滿分12分)

已知橢圓的長軸長是短軸長的倍,,是它的左,右焦點.

(1)若,且,,求、的坐標;

(2)在(1)的條件下,過動點作以為圓心、以1為半徑的圓的切線是切點),且使,求動點的軌跡方程.

 

查看答案和解析>>

科目:高中數學 來源:2010年遼寧省高二上學期10月月考理科數學卷 題型:解答題

(本題滿分12分)已知橢圓的長軸,短軸端點分別是A,B,從橢圓上一點M向x軸作垂線,恰好通過橢圓的左焦點,向量是共線向量

(1)求橢圓的離心率

(2)設Q是橢圓上任意一點,分別是左右焦點,求的取值范圍

 

查看答案和解析>>

同步練習冊答案