若存在實(shí)數(shù)x使以
2x+4
+
1-x
>a成立,則常數(shù)a的取值范圍是
 
考點(diǎn):函數(shù)恒成立問(wèn)題
專題:計(jì)算題,不等式的解法及應(yīng)用
分析:利用柯西不等式,求出左邊對(duì)應(yīng)函數(shù)的最大值,即可確定常數(shù)a的取值范圍.
解答: 解:由題意,由柯西不等式得(
2x+4
+
1-x
2=(
2
x+2
+
1-x
2≤(2+1)(x+2+1-x)=9
2x+4
+
1-x
≤3,
∵存在實(shí)數(shù)x使
2x+4
+
1-x
>a成立
∴a<3
∴常數(shù)a的取值范圍是(-∞,3).
點(diǎn)評(píng):本題主要考查運(yùn)用柯西不等式求最值,解題的關(guān)鍵是變形,利用柯西不等式解題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,四邊形ABCD內(nèi)接于圓O,∠BAD=60°,∠ABC=90°,BC=3,CD=5.求對(duì)角線BD、AC的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知某商品的進(jìn)貨單價(jià)為1元/件,商戶甲往年以單價(jià)2元/件銷售該商品時(shí),年銷量為1萬(wàn)件,今年擬下調(diào)銷售單價(jià)以提高銷量,增加收益.據(jù)測(cè)算,若今年的實(shí)際銷售單價(jià)為x元/件(1≤x≤2),今年新增的年銷量(單位:萬(wàn)件)與(2-x)2成正比,比例系數(shù)為4.
(1)寫出今年商戶甲的收益y(單位:萬(wàn)元)與今年的實(shí)際銷售單價(jià)x間的函數(shù)關(guān)系式;
(2)商戶甲今年采取降低單價(jià),提高銷量的營(yíng)銷策略是否能獲得比往年更大的收益(即比往年收益更多)?說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若關(guān)于x的不等式mx2-2(m+1)x+m+3>0的解集為R,則m的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列命題中,正確命題的序號(hào)是
 

①函數(shù)y=sin4x-cos4x的最小正周期是π;
②終邊在y軸上的角的集合是{α|α=
2
,k∈Z};
③在同一坐標(biāo)系中,函數(shù)y=sinx的圖象與函數(shù)y=x的圖象有3個(gè)公共點(diǎn);
④把函數(shù)y=3sin(2x+
π
3
)的圖象向右平移
π
6
得到y(tǒng)=3sin2x的圖象.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若函數(shù)f(x)同時(shí)滿足:①對(duì)于定義域上的任意x,恒有f(x)+f(-x)=0;②對(duì)于定義域上的任意x1,x2,當(dāng)x1≠x2時(shí),恒有
f(x1)-(x2)
x1-x2
<0
,則稱函數(shù)f(x)為“理想函數(shù)”.
給出下列四個(gè)函數(shù)中:
(1)f(x)=x+1;
(2)f(x)=x2
(3)f(x)=-x;
(4)f(x)=
-x2,x≥0
x2,x<0

能被稱為“理想函數(shù)”的有
 
(填相應(yīng)的序號(hào)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知拋物線C1:y=-
1
2p
x2
(p>0)的焦點(diǎn)與雙曲線C2
x2
3
-y2=1的左焦點(diǎn)的連線交C1于第三象限的點(diǎn)M.若C1在點(diǎn)M處的切線平行于C2的一條漸近線,則P=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

給出下列四個(gè)命題:
①四邊形是平面圖形;
②有三個(gè)共同點(diǎn)的兩個(gè)平面重合;
③兩兩相交的三條直線必在同一平面內(nèi);
④三角形必是平面圖形.
其中正確的命題是
 
(填寫所有正確命題的序號(hào)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,AB是⊙O的直徑,弦CD交AB于點(diǎn)P,PA=2,PC=6,PD=4,則AB等于( 。
A、3B、8C、12D、14

查看答案和解析>>

同步練習(xí)冊(cè)答案