精英家教網 > 高中數學 > 題目詳情

已知定義域為R的函數f(x)滿足f(-x)= -f(x+4),當x>2時,f(x)單調遞增,如果x1+x2<4且(x1-2)(x2-2)<0,則f(x1)+f(x2)的值(     )

A.恒小于0          B.恒大于0          C.可能為0       D.可正可負

 

【答案】

A

【解析】由定義域為R的函數f(x)滿足f(-x)= -f(x+4),得函數f(x)關于點(2,0)對稱,又當x>2時,f(x)單調遞增,所以x<2時也是單調遞增,且 ,又x1+x2<4且(x1-2)(x2-2)<0,所以x1  距離2較遠,x2 距離2較近,數形結合得f(x1)+f(x2)的值恒小于0

 

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

(2010•石家莊二模)已知定義域為R的函數f(x)在(1,+∞)上為減函數,且函數y=f(x+1)為偶函數,則( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

已知定義域為R的函數f(x)滿足f(x)f(x+2)=5,若f(2)=3,則f(2012)=
5
3
5
3

查看答案和解析>>

科目:高中數學 來源: 題型:

已知定義域為R的函數f(x)在(4,+∞)上為減函數,且函數y=f(x)的對稱軸為x=4,則( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

已知定義域為R的函數f(x)=
-2x+a2x+1
是奇函數
(1)求a值;
(2)判斷并證明該函數在定義域R上的單調性;
(3)若對任意的t∈R,不等式f(t2-2t)+f(2t2-k)<0恒成立,求實數k的取值范圍;
(4)設關于x的函數F(x)=f(4x-b)+f(-2x+1)有零點,求實數b的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知定義域為R的函數f(x)滿足f(4-x)=-f(x),當x<2時,f(x)單調遞減,如果x1+x2>4且(x1-2)(x2-2)<0,則f(x1)+f(x2)的值( 。

查看答案和解析>>

同步練習冊答案