【題目】已知橢圓Cab0)的焦距為2,且過(guò)點(diǎn).

1)求橢圓C的方程;

2)已知△BMN是橢圓C的內(nèi)接三角形,若坐標(biāo)原點(diǎn)O為△BMN的重心,求點(diǎn)O到直線(xiàn)MN距離的最小值.

【答案】12

【解析】

1)由題意焦距的值可得c的值,再由橢圓過(guò)點(diǎn),及a,b,c之間的關(guān)系求出a,b的值,進(jìn)而求出橢圓的方程;

2)分B的縱坐標(biāo)為0和不為0兩種情況討論,設(shè)B的坐標(biāo),由O是三角形的重心可得MN的中點(diǎn)的坐標(biāo),設(shè)MN的坐標(biāo),代入橢圓方程兩式相減可得直線(xiàn)MN的斜率,求出直線(xiàn)MN的方程,求出O到直線(xiàn)MN的距離的表達(dá)式,再由B的縱坐標(biāo)的范圍求出d的取值范圍,進(jìn)而求出d的最小值.

解:(1)由題意可得:橢圓的焦距為2,,又橢圓過(guò)點(diǎn)

,解得:a24,b23

所以橢圓的方程為:1;

2)設(shè)B,記線(xiàn)段MN中點(diǎn)D,

因?yàn)?/span>OBMN的重心,所以2,則點(diǎn)D的坐標(biāo)為:,

n0,則|m|2,此時(shí)直線(xiàn)MNx軸垂直,

故原點(diǎn)O到直線(xiàn)MN的距離為,即為1,

n0,此時(shí)直線(xiàn)MN的斜率存在,

設(shè)Mx1,y1),Nx2,y2),則x1+x2=﹣my1+y2=﹣n,

11,

兩式相減0,

可得:kMN

故直線(xiàn)MN的方程為:yx,即6mx+8ny+3m2+4n20

則點(diǎn)O到直線(xiàn)MN的距離d,

1,代入得d,

因?yàn)?/span>0n23,所以dmin,又1,

故原點(diǎn)O到直線(xiàn)MN的距離的最小值為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正方形的邊長(zhǎng)為1,E,F分別是,的中點(diǎn),EF于點(diǎn)D,現(xiàn)沿SE,SFEF把這個(gè)正方形折成一個(gè)四面體,使,,三點(diǎn)重合,重合后的點(diǎn)記為G,則在四面體中必有(

A.平面EFG

B.設(shè)線(xiàn)段SF的中點(diǎn)為H,則平面SGE

C.四面體的體積為

D.四面體的外接球的表面積為

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為徹底打贏脫貧攻堅(jiān)戰(zhàn),2020年春,某市政府投入資金幫扶某農(nóng)戶(hù)種植蔬菜大棚脫貧致富,若該農(nóng)戶(hù)計(jì)劃種植冬瓜和茄子,總面積不超過(guò)15畝,幫扶資金不超過(guò)4萬(wàn)元,冬瓜每畝產(chǎn)量10 000斤,成本2000元,每斤售價(jià)0.5元,茄子每畝產(chǎn)量5000斤,成本3000元,每斤售價(jià)1.4元,則該農(nóng)戶(hù)種植冬瓜和茄子利潤(rùn)的最大值為(

A.4萬(wàn)元B.5.5萬(wàn)元C.6.5萬(wàn)元D.10萬(wàn)元

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè).

1)討論上的單調(diào)性;

2)令,試證明上有且僅有三個(gè)零點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系中,曲線(xiàn)的參數(shù)方程為為參數(shù)),以原點(diǎn)為極點(diǎn),以軸正半軸為極軸,建立極坐標(biāo)系,曲線(xiàn)的極坐標(biāo)方程為.

1)求曲線(xiàn)的普通方程與曲線(xiàn)的直角坐標(biāo)方程;

2)設(shè)為曲線(xiàn)上位于第一,二象限的兩個(gè)動(dòng)點(diǎn),且,射線(xiàn)交曲線(xiàn)分別于,求面積的最小值,并求此時(shí)四邊形的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】一場(chǎng)突如其來(lái)的新冠肺炎疫情在全國(guó)蔓延,在黨中央的堅(jiān)強(qiáng)領(lǐng)導(dǎo)和統(tǒng)一指揮下,全國(guó)人民眾志成城、團(tuán)結(jié)一心,共抗疫情。每天測(cè)量體溫也就成為了所有人的一項(xiàng)責(zé)任,一般認(rèn)為成年人腋下溫度(單位:℃)平均在36℃~37℃之間即為正常體溫,超過(guò)37.1℃即為發(fā)熱。發(fā)熱狀態(tài)下,不同體溫可分成以下三種發(fā)熱類(lèi)型:低熱:;高熱:;超高熱(有生命危險(xiǎn)):.

某位患者因發(fā)熱,雖排除肺炎,但也于12日至26日住院治療. 醫(yī)生根據(jù)病情變化,從14日開(kāi)始,以3天為一個(gè)療程,分別用三種不同的抗生素為該患者進(jìn)行消炎退熱. 住院期間,患者每天上午8:00服藥,護(hù)士每天下午16:00為患者測(cè)量腋下體溫記錄如下:

抗生素使用情況

沒(méi)有使用

使用“抗生素A”治療

使用“抗生素B”治療

日期

12

13

14

15

16

17

18

19

體溫(℃)

38.7

39.4

39.7

40.1

39.9

39.2

38.9

39.0

抗生素使用情況

使用“抗生素C”治療

沒(méi)有使用

日期

20

21

22

23

24

25

26

體溫(℃)

38.4

38.0

37.6

37.1

36.8

36.6

36.3

1)請(qǐng)你計(jì)算住院期間該患者體溫不低于39℃的各天體溫平均值;

2)在18日—22日期間,醫(yī)生會(huì)隨機(jī)選取3天在測(cè)量體溫的同時(shí)為該患者進(jìn)行某一特殊項(xiàng)目“項(xiàng)目”的檢查,求至少兩天在高熱體溫下做“項(xiàng)目”檢查的概率;

3)抗生素治療一般在服藥后2-8個(gè)小時(shí)就能出現(xiàn)血液濃度的高峰,開(kāi)始?xì)缂?xì)菌,達(dá)到消炎退熱效果.假設(shè)三種抗生素治療效果相互獨(dú)立,請(qǐng)依據(jù)表中數(shù)據(jù),判斷哪種抗生素治療效果最佳,并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某志愿者服務(wù)網(wǎng)站在線(xiàn)招募志愿者,當(dāng)報(bào)名人數(shù)超過(guò)計(jì)劃招募人數(shù)時(shí),將采用隨機(jī)抽取的方法招募志愿者,如表記錄了AB,C,D四個(gè)項(xiàng)目最終的招募情況,其中有兩個(gè)數(shù)據(jù)模糊,記為a,b.

甲同學(xué)報(bào)名參加了這四個(gè)志愿者服務(wù)項(xiàng)目,記ξ為甲同學(xué)最終被招募的項(xiàng)目個(gè)數(shù),已知Pξ=0Pξ=4.

(Ⅰ)求甲同學(xué)至多獲得三個(gè)項(xiàng)目招募的概率;

(Ⅱ)求ab的值;

(Ⅲ)假設(shè)有十名報(bào)了項(xiàng)目A的志愿者(不包含甲)調(diào)整到項(xiàng)目D,試判斷Eξ如何變化(結(jié)論不要求證明).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)的最大值為,其圖像相鄰的兩條對(duì)稱(chēng)軸之間的距離為,且的圖像關(guān)于點(diǎn)對(duì)稱(chēng),則下列結(jié)論正確的是( .

A.函數(shù)的圖像關(guān)于直線(xiàn)對(duì)稱(chēng)

B.當(dāng)時(shí),函數(shù)的最小值為

C.,則的值為

D.要得到函數(shù)的圖像,只需要將的圖像向右平移個(gè)單位

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】垃圾分類(lèi)是對(duì)垃圾進(jìn)行有效處置的一種科學(xué)管理方法,為了了解居民對(duì)垃圾分類(lèi)的知曉率和參與率,引導(dǎo)居民積極行動(dòng),科學(xué)地進(jìn)行垃圾分類(lèi),某小區(qū)隨機(jī)抽取年齡在區(qū)間上的50人進(jìn)行調(diào)研,統(tǒng)計(jì)出年齡頻數(shù)分布及了解垃圾分類(lèi)的人數(shù)如下表:

年齡

頻數(shù)

5

10

10

15

5

5

了解

4

5

8

12

2

1

1)填寫(xiě)下面2×2列聯(lián)表,并判斷能否在犯錯(cuò)誤的概率不超過(guò)0.01的前提下認(rèn)為以65歲為分界點(diǎn)居民對(duì)了解垃圾分類(lèi)的有關(guān)知識(shí)有差異;

年齡低于65歲的人數(shù)

年齡不低于65歲的人數(shù)

合計(jì)

了解

不了解

合計(jì)

2)若對(duì)年齡在的被調(diào)研人中各隨機(jī)選取2人進(jìn)行深入調(diào)研,記選中的4人中不了解垃圾分類(lèi)的人數(shù)為X,求隨機(jī)變量X的分布列和數(shù)學(xué)期望

參考公式和數(shù)據(jù)

,其中.

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

同步練習(xí)冊(cè)答案