20.已知f(x)=$\left\{\begin{array}{l}{{2}^{x-1}-2,x≤1}\\{-lo{g}_{2}(x+1),x>1}\end{array}\right.$,若f(a)=-3,則f(6-a)=$-\frac{7}{4}$.

分析 分類討論滿足f(a)=-3的a值,進(jìn)而可得f(6-a)的值.

解答 解:當(dāng)a≤1時(shí),f(a)=2a-1-2=-3無解,
當(dāng)a>1時(shí),解f(a)=-log2(a+1)=-3得:a=7,
∴f(6-a)=f(-1)=2-2-2=$-\frac{7}{4}$,
故答案為:$-\frac{7}{4}$

點(diǎn)評 本題考查的知識(shí)點(diǎn)是分段函數(shù)的應(yīng)用,函數(shù)求值,分類討論思想,指數(shù)函數(shù)和對數(shù)函數(shù),難度中檔.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.在復(fù)數(shù)集內(nèi)解方程x2+2|x|-3=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知x,y滿足約束條件$\left\{\begin{array}{l}{x≥1}\\{x+y≤3}\\{y≥\frac{1}{2}x-\frac{3}{2}}\end{array}\right.$,則z=2x+y的最小值為1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知三條直線y=2x,x+y=3,mx+ny+5=0交于一點(diǎn),則坐標(biāo)(m,n)可能是( 。
A.(-1,3)B.(3,-1)C.(-3,1)D.(-3,-1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.在△ABC中,$\overrightarrow{AD}$=$\frac{1}{4}$$\overrightarrow{AB}$,DE∥BC,且DE與AC相交于點(diǎn)E,M是BC的中點(diǎn),AM與DE相交于點(diǎn)N,若$\overrightarrow{AN}$=x$\overrightarrow{AB}$+y$\overrightarrow{AC}$(x,y∈R),則x+y等于(  )
A.1B.$\frac{1}{2}$C.$\frac{1}{4}$D.$\frac{1}{8}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知f(x)=sinx+log2$\frac{1+x}{1-x}$+1.
(1)求f($\frac{1}{2}$)+f(-$\frac{1}{2}$)的值;
(2)若f(sinθ)>f(cosθ),θ為銳角,求θ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知M={-1,1,2,3},則冪函數(shù)y=xα(α∈M)的圖象不經(jīng)過( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知:A(2,5),B(6,-1),C(9,1),求證:AB⊥BC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知a,b∈R,則“$\frac{1}{a}>\frac{1}$”是“2a<2b”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

同步練習(xí)冊答案