【題目】繳納個(gè)人所得稅是收入達(dá)到繳納標(biāo)準(zhǔn)的公民應(yīng)盡的義務(wù).

①個(gè)人所得稅率是個(gè)人所得稅額與應(yīng)納稅收入額之間的比例;

②應(yīng)納稅收入額=月度收入-起征點(diǎn)金額-專項(xiàng)扣除金額(三險(xiǎn)一金等);

2018831日,第十三屆全國(guó)人民代表大會(huì)常務(wù)委員會(huì)第五次會(huì)議《關(guān)于修改中華人民共和國(guó)個(gè)人所得稅法的決定》,將個(gè)稅免征額(起征點(diǎn)金額)由3500元提高到5000.下面兩張表格分別是2012年和2018年的個(gè)人所得稅稅率表:

201211日實(shí)行:

級(jí)數(shù)

應(yīng)納稅收入額(含稅)

稅率(

速算扣除數(shù)

不超過(guò)1500元的部分

3

0

超過(guò)1500元至4500元的部分

10

105

超過(guò)4500元至9000元的部分

20

555

超過(guò)9000元至35000元的部分

25

1005

超過(guò)35000元至55000元的部分

30

2755

超過(guò)55000元至80000元的部分

35

5505

超過(guò)80000元的部分

45

13505

2018101日試行:

級(jí)數(shù)

應(yīng)納稅收入額(含稅)

稅率(

速算扣除數(shù)

不超過(guò)3000元的部分

3

0

超過(guò)3000元至12000元的部分

10

210

超過(guò)12000元至25000元的部分

20

1410

超過(guò)25000元至35000元的部分

25

2660

超過(guò)35000元至55000元的部分

30

4410

超過(guò)55000元至80000元的部分

35

7160

超過(guò)80000元的部分

45

15160

1)何老師每月工資收入均為13404元,專項(xiàng)扣除金額3710元,請(qǐng)問(wèn)何老師10月份應(yīng)繳納多少元個(gè)人所得稅?若與9月份相比,何老師增加收入多少元?

2)對(duì)于財(cái)務(wù)人員來(lái)說(shuō),他們計(jì)算個(gè)人所得稅的方法如下:應(yīng)納個(gè)人所得稅稅額=應(yīng)納稅收入額×適用稅率-速算扣除數(shù),請(qǐng)解釋這種計(jì)算方法的依據(jù)?

【答案】(1)何老師10月份應(yīng)繳納元個(gè)人所得稅,增加收入元(2)詳見(jiàn)解析

【解析】

1)先計(jì)算出月份的扣稅,再計(jì)算出月份的扣稅,兩者作差,計(jì)算出何老師增加的收入.

(2)直接按當(dāng)前級(jí)數(shù)稅率計(jì)算,則多算了前面級(jí)數(shù)的金額,所以要扣除.這樣計(jì)算可以減少運(yùn)算量,能使財(cái)務(wù)人員迅速計(jì)算出個(gè)人所得稅.

110月份,,∴;9月份,,∴;增加收入元;

2)速算扣除數(shù)等于按當(dāng)前級(jí)數(shù)稅率計(jì)算后,前面級(jí)數(shù)多算的金額,所以扣除,

201810月的表中,,,依此類推.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知矩形中,分別是、上的點(diǎn),,,的中點(diǎn),現(xiàn)沿著翻折,使平面平面.

1的中點(diǎn),求證:平面.

2)求點(diǎn)到平面的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為評(píng)估設(shè)備生產(chǎn)某種零件的性能,從設(shè)備生產(chǎn)零件的流水線上隨機(jī)抽取100件零件作為樣本,測(cè)量其直徑后,整理得到下表:

直徑

58

59

61

62

63

64

65

66

67

68

69

70

71

73

合計(jì)

件數(shù)

1

1

3

5

6

19

33

18

4

4

2

1

2

1

100

經(jīng)計(jì)算,樣本的平均值,標(biāo)準(zhǔn)差,以頻率值作為概率的估計(jì)值,用樣本估計(jì)總體.

(1)將直徑小于等于或直徑大于的零件認(rèn)為是次品,從設(shè)備的生產(chǎn)流水線上隨意抽取3個(gè)零件,計(jì)算其中次品個(gè)數(shù)的數(shù)學(xué)期望

(2)為評(píng)判一臺(tái)設(shè)備的性能,從該設(shè)備加工的零件中任意抽取一件,記其直徑為,并根據(jù)以下不等式進(jìn)行評(píng)判(表示相應(yīng)事件的概率):①;②;③.評(píng)判規(guī)則為:若同時(shí)滿足上述三個(gè)不等式,則設(shè)備等級(jí)為甲;僅滿足其中兩個(gè),則等級(jí)為乙;若僅滿足其中一個(gè),則等級(jí)為丙;若全部不滿足,則等級(jí)為丁,試判斷設(shè)備的性能等級(jí)并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在三棱柱ABC-A1B1C1中,AB=AC,A1在底面ABC的射影為BC的中點(diǎn),D是B1C1的中點(diǎn).證明:A1D⊥平面A1BC;

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(2015·湖南)如下圖,直三棱柱ABCA1B1C1的底面是邊長(zhǎng)為2的正三角形,E、F分別是BC、CC1的中點(diǎn).

(1)證明:平面AEF⊥平面B1BCC1;

(2)若直線A1C與平面A1ABB1所成的角為45°,求三棱錐FAEC的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(1)曲線在點(diǎn)處的切線斜率為,求該切線方程;

(2)若函數(shù)在區(qū)間上恒成立,且存在使得,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)xR

1)判斷函數(shù)的奇偶性,并說(shuō)明理由;

2)利用函數(shù)單調(diào)性定義證明:上是增函數(shù);

3)若對(duì)任意的xR,任意的 恒成立,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在極坐標(biāo)系中,已知圓的圓心為,半徑為.以極點(diǎn)為原點(diǎn),極軸方向?yàn)?/span>軸正半軸方向,利用相同單位長(zhǎng)度建立平面直角坐標(biāo)系,直線的參數(shù)方程為為參數(shù),).

(Ⅰ)寫出圓的極坐標(biāo)方程和直線的普通方程;

(Ⅱ)若直線與圓交于、兩點(diǎn),求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,T是由A的子集組成的集合,滿足性質(zhì):空集和屬于,且任意兩個(gè)元素的交和并也屬于T,

(1)當(dāng)T的元素個(gè)數(shù)為2時(shí),請(qǐng)寫出所有符合條件的T.

(2)當(dāng)T的元素個(gè)數(shù)為3時(shí),請(qǐng)寫出所有符合條件的T.

(3)求所有符合條件的T的個(gè)數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案