設(shè)a∈[0,10],則函數(shù)g(x)=
a-2
x
在區(qū)間(0,+∞)內(nèi)為增函數(shù)的概率為
 
考點(diǎn):幾何概型
專題:概率與統(tǒng)計(jì)
分析:根據(jù)函數(shù)g(x)=
a-2
x
在區(qū)間(0,+∞)內(nèi)為增函數(shù),可得a>2,結(jié)合a∈[0,10],以長(zhǎng)度為測(cè)度,即可求概率.
解答: 解:∵函數(shù)g(x)=
a-2
x
在區(qū)間(0,+∞)內(nèi)為增函數(shù),
∴a<2,
∵a∈[0,10],
∴函數(shù)g(x)=
a-2
x
在區(qū)間(0,+∞)內(nèi)為增函數(shù)的概率為
2-0
10-0
=
1
5

故答案為:
1
5
點(diǎn)評(píng):本題考查概率的計(jì)算,考查函數(shù)的單調(diào)性,確定測(cè)度是關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=log2(2x+1-2t)的值域?yàn)镽,則實(shí)數(shù)t的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓Γ:
x2
a2
+
y2
b2
=1(a>b>0)
的離心率為
2
2
,且橢圓Γ的右焦點(diǎn)F與拋物線y2=4x的焦點(diǎn)重合.
(Ⅰ)求橢圓Γ的標(biāo)準(zhǔn)方程;
(Ⅱ)過(guò)左焦點(diǎn)F的直線l與橢圓交于A,B兩點(diǎn),是否存在直線l,使得OA⊥OB,O為坐標(biāo)原點(diǎn),若存在,求出l的方程,若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

一動(dòng)圓截直線3x-y=0和直線3x+y=0所得弦長(zhǎng)分別為8,6,求動(dòng)圓圓心的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在平面直角坐標(biāo)系xOy中,曲線y=x2-2x-3與坐標(biāo)軸的交點(diǎn)都在圓C上.
(1)求圓C的方程;
(2)若直線x+y+a=0與圓C交于A,B兩點(diǎn),且AB=2,求實(shí)數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)區(qū)域Ω={(x,y)|0≤x≤2,0≤y≤2},區(qū)域A={(x,y)|xy≤1,(x,y)∈Ω},在區(qū)域Ω中隨機(jī)取一個(gè)點(diǎn),則該點(diǎn)恰好在區(qū)域A中的概率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若log4x=1,則
x
的值為( 。
A、2B、±2C、0D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}的前n項(xiàng)和為Sn,記f(n)=2an+1Sn-n(2Sn+an+1),n∈N*
(1)若數(shù)列{an}是首項(xiàng)與公差均為1的等差數(shù)列,求f(2014);
(2)若a1=1,a2=2且數(shù)列{a2n-1},{a2n}均是公比為4的等比數(shù)列,求證:對(duì)任意正整數(shù)n,f(n)≥0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=sin2ωx+2
3
sinωx•cosωx-cos2ωx+λ
,(x∈R)的圖象關(guān)于直線x=π對(duì)稱,其中ω,λ為常數(shù),且ω∈(
1
2
,1)

(1)求函數(shù)f(x)的最小正周期;
(2)若y=f(x)的圖象經(jīng)過(guò)點(diǎn)(
π
4
,0)
,求函數(shù)f(x)在x∈[0,
π
2
]
上的值域.

查看答案和解析>>

同步練習(xí)冊(cè)答案