分析 (1)根據平面向量的線性運算以及共線定理,列出方程求出λ的值;
(2)根據平面向量的數量積以及二次函數的圖象與性質,即可求出$\overrightarrow a•\overrightarrow b$的最值.
解答 解:(1)$\overrightarrow{AB}=2\overrightarrow{e_1}+\overrightarrow{e_2}$,$\overrightarrow{BE}=-\overrightarrow{e_1}+λ\overrightarrow{e_2}$,
∴$\overrightarrow{AE}$=$\overrightarrow{AB}$+$\overrightarrow{BE}$=$\overrightarrow{{e}_{1}}$+(1+λ)$\overrightarrow{{e}_{2}}$,
又$\overrightarrow{EC}=-2\overrightarrow{e_1}+\overrightarrow{e_2}$,且A,E,C三點共線,
∴存在實數k,使得$\overrightarrow{AE}$=k$\overrightarrow{EC}$,
即$\overrightarrow{e_1}+(1+λ)\overrightarrow{e_2}=k(-2\overrightarrow{e_1}+\overrightarrow{e_2})$,
整理得$(1+2k)\overrightarrow{e_1}=(k-1-λ)\overrightarrow{e_2}$,
∵$\overrightarrow{e_1}$,$\overrightarrow{e_2}$是平面內兩個不共線的非零向量,
∴$\left\{\begin{array}{l}1+2k=0\\ λ=k-1\end{array}\right.$,
解得$k=-\frac{1}{2},λ=-\frac{3}{2}$;
(2)∵$\overrightarrow{e_1}$,$\overrightarrow{e_2}$是夾角為600的單位向量,
∴$\overrightarrow{e_1}•\overrightarrow{e_2}=\frac{1}{2}$,
∴$\overrightarrow a•\overrightarrow b=(\overrightarrow{e_1}+λ\overrightarrow{e_2})•(-2λ\overrightarrow{e_1}-\overrightarrow{e_2})=-{λ^2}-3λ-\frac{1}{2}=-{(λ+\frac{3}{2})^2}+\frac{7}{4}$;
且在$λ∈[-3,-\frac{3}{2}]$上是增函數,在$λ∈[-\frac{3}{2},5]$上是減函數,
∴λ=-$\frac{3}{2}$時,$\overrightarrow a•\overrightarrow b$取最大值是$\frac{7}{4}$,
λ=5時,$\overrightarrow{a}$•$\overrightarrow$取得最小值是-52-3×5-$\frac{1}{2}$=$-40\frac{1}{2}$.
點評 本題考查了平面向量的線性運算以及共線定理和數量積、二次函數的圖象與性質的應用問題,是綜合性題目.
科目:高中數學 來源: 題型:選擇題
A. | $\frac{π}{6}$ | B. | $\frac{π}{3}$ | C. | $\frac{2π}{3}$ | D. | $\frac{5π}{6}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | $\frac{8}{3}$ | B. | $\frac{7}{3}$ | C. | 2 | D. | $\frac{5}{3}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | m=10 n=20 n=m m=n | |
B. | m=10 n=20 s=m n=s | |
C. | m=10 n=20 s=m m=n n=s | |
D. | m=10 n=20 s=m t=n n=s m=n |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | {x|2≤x<3} | B. | {x|-2≤x<0} | C. | {x|0<x≤2} | D. | {x|-2≤x<3} |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com