【題目】已知在點處的切線與直線平行.

(Ⅰ)求實數(shù)的值;

(Ⅱ)設

i)若函數(shù)上恒成立,求的最大值;

ii)當時,判斷函數(shù)有幾個零點,并給出證明.

【答案】(Ⅰ)1;(Ⅱ)1;詳見解析.

【解析】

求函數(shù)的導數(shù),計算時的導數(shù)即可求出a的值;的導數(shù),討論當的單調性,由單調性判斷最值即可得到b的最大值;化簡0的一個零點,利用構造函數(shù)法討論時,函數(shù)是否有零點,從而確定函數(shù)的零點情況.

解:函數(shù),則

由題意知時,,即a的值為1;

所以,

時,若,則,,單調遞增,所以

時,若,令,解得舍去,

所以內單調遞減,,所以不恒成立,

所以b的最大值為1;

,顯然有一個零點為0,

,則;

時,無零點,所以只有一個零點0;

時,,所以R上單調遞增,

,,

由零點存在性定理可知,上有唯一一個零點,

所以2個零點;

綜上所述,時,只有一個零點,時,2個零點.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】是圓上的任意一點,是過點且與軸垂直的直線,是直線軸的交點,點在直線上,且滿足.當點在圓上運動時,記點的軌跡為曲線.

(1)求曲線的方程;

(2)已知點,過的直線交曲線兩點,交直線于點.判定直線的斜率是否依次構成等差數(shù)列?并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù) .

1)若,函數(shù)的極大值為,求實數(shù)的值;

2)若對任意的, ,在上恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直角梯形中,,,的中點,如圖沿折到的位置,使,點上,且,如圖2

求證:平面

求二面角的正切值;

在線段上是否存在點,使平面?若存在,確定的位置,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓E:的離心率是,分別為橢圓E的左右頂點,B為上頂點,的面積為直線l過點且與橢圓E交于P,Q兩點.

求橢圓E的標準方程;

面積的最大值;

設直線與直線交于點N,證明:點N在定直線上,并寫出該直線方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列選項正確的為(

A.已知直線,則的充分不必要條件是

B.命題若數(shù)列為等比數(shù)列,則數(shù)列為等比數(shù)列是假命題

C.棱長為正方體中,平面與平面距離為

D.已知為拋物線上任意一點且,若恒成立,則

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】空氣質量按照空氣質量指數(shù)大小分為七檔(五級),相對應空氣質量的七個類別,指數(shù)越大,說明污染的情況越嚴重,對人體危害越大.

指數(shù)

級別

類別

戶外活動建議

優(yōu)

可正;顒

輕微污染

易感人群癥狀有輕度加劇,健康人群出現(xiàn)刺激癥狀,心臟病和呼吸系統(tǒng)疾病患者應減少體積消耗和戶外活動.

輕度污染

中度污染

心臟病和肺病患者癥狀顯著加劇,運動耐受力降低,健康人群中普遍出現(xiàn)癥狀,老年人和心臟病、肺病患者應減少體力活動.

中度重污染

重污染

健康人運動耐受力降低,由明顯強烈癥狀,提前出現(xiàn)某些疾病,老年人和病人應當留在室內,避免體力消耗,一般人群應盡量減少戶外活動.

現(xiàn)統(tǒng)計邵陽市市區(qū)2016年1月至11月連續(xù)60天的空氣質量指數(shù),制成如圖所示的頻率分布直方圖.

(1)求這60天中屬輕度污染的天數(shù);

(2)求這60天空氣質量指數(shù)的平均值;

(3)一般地,當空氣質量為輕度污染或輕度污染以上時才會出現(xiàn)霧霾天氣,且此時出現(xiàn)霧霾天氣的概率為,請根據統(tǒng)計數(shù)據,求在未來2天里,邵陽市恰有1天出現(xiàn)霧霾天氣的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,已知在矩形中,,,平面,且.

1)問當實數(shù)在什么范圍時,邊上能存在點,使得

2)當邊上有且僅有一個點使得時,求二面角的余弦值大小.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示的幾何體中,四邊形為菱形, , , , ,平面平面, , 的中點, 為平面內任一點.

(1)在平面內,過點是否存在直線使?如果不存在,請說明理由,如果存在,請說明作法;

(2)過, 三點的平面將幾何體截去三棱錐,求剩余幾何體的體積.

查看答案和解析>>

同步練習冊答案