19.求函數(shù)y=-tan2x-tanx-3,x∈[-$\frac{π}{4}$,$\frac{π}{3}$]的值域.

分析 由條件利用正切函數(shù)的定義域和值域求得tanx的范圍,再利用二次函數(shù)的性質(zhì)求得函數(shù)y的值域.

解答 解:由x∈[-$\frac{π}{4}$,$\frac{π}{3}$],可得tanx∈[-1,$\sqrt{3}$],函數(shù)y=-tan2x-tanx-3=-${(tanx+\frac{1}{2})}^{2}$-$\frac{11}{4}$,
故當tanx=-$\frac{1}{2}$時,函數(shù)y取得最大值為-$\frac{11}{4}$,當tanx=$\sqrt{3}$時,函數(shù)y取得最小值為-6-2$\sqrt{3}$,
故函數(shù)y的值域為[-6-2$\sqrt{3}$,-$\frac{11}{4}$].

點評 本題主要考查正切函數(shù)的定義域和值域,二次函數(shù)的性質(zhì)應(yīng)用,屬于基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知函數(shù)$f(x)=\left\{{\begin{array}{l}{|{{log}_2}x|,}&{(0<x<4)}\\{-\frac{1}{2}x+6,}&{(x≥4)}\end{array}}\right.$,若方程f(x)-k=0有三個不同的解a,b,c,且a<b<c,則ab+c的取值范圍是(11,13).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.若α為三四象限角則化簡$\sqrt{\frac{1-cosα}{1+cosα}}$-$\sqrt{\frac{1+cosα}{1-cosα}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.計算:log535+2log0.5$\sqrt{2}$-log5$\frac{1}{50}$-log514.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知sinα=2cosα,求下列各式的值.
(1)sin2α一2cos2α
(2)sin2α+sinαcosα+3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知A,B是單位圓O上的動點,且A,B分別在第一,二象限.C是圓與x軸正半軸的交點,△AOB為正三角形,記∠AOC=α
(1)若A點的橫坐標為$\frac{3}{5}$,求tan(540°-α)的值;
(2)若tan(α+60°)=-$\frac{3}{4}$,求B、C兩點之間的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.下列命題是假命題的是( 。
A.若$\overrightarrow{a}•\overrightarrow$=0($\overrightarrow{a}$≠0,$\overrightarrow$≠0),則$\overrightarrow{a}⊥\overrightarrow$B.若|$\overrightarrow{a}$|=|$\overrightarrow$|,則$\overrightarrow{a}$=$\overrightarrow$
C.若ac2>bc2,則a>bD.若α=60°,則cosα=$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.若函數(shù)f(x)=1og${\;}_{\frac{1}{2}}$(x2-ax+1).
(1)若函數(shù)的定義域為R,求a的取值范圍.
(2)若函數(shù)的值域為R,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.用min{a,b}表示a,b兩數(shù)中的最小值,若函數(shù)f(x)=min{|x-3|,|x+1|},則不等式f(x)<f(0)的解集是(-2,0)∪(2,4).

查看答案和解析>>

同步練習冊答案