若復數(shù)z滿足z•(1+2i)=1,則
z
=(  )
A、
1
5
-
2
5
i
B、1-2i
C、
1
5
+
2
5
i
D、1+2i
考點:復數(shù)代數(shù)形式的乘除運算
專題:數(shù)系的擴充和復數(shù)
分析:利用復數(shù)的運算法則、共軛復數(shù)的定義即可得出.
解答: 解:∵復數(shù)z滿足z•(1+2i)=1,∴z(1+2i)(1-2i)=1-2i,∴z=
1
5
-
2
5
i

.
z
=
1
5
+
2
5
i

故選:C.
點評:本題考查了復數(shù)的運算法則、共軛復數(shù)的定義,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

12個籃球隊中有3個強隊,任意分成三個組(每組4個隊),則3個強隊恰好被分在同一組的概率為( 。
A、
1
4
B、
1
3
C、
1
55
D、
3
55

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

下列關于函數(shù)f(x)=sin(2x+
π
3
)的結論:
①f(x)的最小正周期是2π;
②f(x)在區(qū)間[kπ-
12
,kπ+
π
12
](k∈Z)上單調(diào)遞增;
③當x∈[0,
π
2
]時,f(x)的值域為[-
3
2
,
3
2
];
④函數(shù)y=f(x+
π
12
)是偶函數(shù).
其中正確的結論為(  )
A、①②B、②③C、②④D、③④

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

點P(-1,1)關于直線ax-y+b=0的對稱點是Q(3,-1),則a、b的值依次是( 。
A、-2,2
B、2,-2
C、
1
2
,-
1
2
D、-
1
2
,
1
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)定義域是R,滿足對任意的x1<x2,都有
f(x1)-f(x2)
x1-x2
>0
,且A(0,-2),B(3,2)是其圖象上的兩點,那么|f(x+1)|<2的解集是( 。
A、(1,4)
B、(-1,2)
C、(-∞,1)∪[4,+∞]
D、(-∞,-1)∪[2,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知奇函數(shù)f(x)滿足對于?x∈R,都有f(1+x)=f(1-x),且當x∈[-1,0]時,f(x)=-x2,又函數(shù)g(x)=|sinπx|,則函數(shù)h(x)=f(x)-g(x)在[-2,2]上的零點個數(shù)是(  )
A、4B、5C、6D、7

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖所示的程序框圖,運行相應的程序,若輸入x的值為4,則輸出y的值為( 。
A、2B、4C、8D、16

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

閱讀如圖所示的程序框圖.若輸入m=8,n=6,則輸出的a,i分別等于(  )
A、12,2B、12,3
C、24,2D、24,3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在三棱錐P-ABC中,三個側棱PA、PB、PC兩兩垂直,PH⊥底面ABC.求證:
(1)AH⊥BC;
(2)BH⊥AC;
(3)CH⊥AB.

查看答案和解析>>

同步練習冊答案