【題目】已知函數(shù).
(I)求函數(shù)的單調(diào)區(qū)間;
(II)若在
上恒成立,求實(shí)數(shù)
的取值范圍;
(III)在(II)的條件下,對任意的,求證:
.
【答案】(I)當(dāng)時(shí),
在
上單調(diào)遞增,無單調(diào)遞減區(qū)間,當(dāng)
時(shí),
的單調(diào)遞增區(qū)間為
,單調(diào)遞減區(qū)間為
;(II)
;(III)證明見解析.
【解析】試題分析:(I)利用時(shí)
為單調(diào)增函數(shù),
時(shí)
為單調(diào)減函數(shù)這一性質(zhì)來分情況討論題中
單調(diào)區(qū)間問題;(II)根據(jù)函數(shù)單調(diào)性與最值,若
在
上恒成立,則函數(shù)的最大值小于或等于零.當(dāng)
時(shí),
在
上單調(diào)遞增,
,說明
時(shí)
,不合題意舍去.當(dāng)
時(shí),
的最大值小于零.但
在
上恒成立,所以
只能等于零.令
即可求得答案;(III)首先將
的表達(dá)式表達(dá)出來,化簡轉(zhuǎn)化為
的形式,再根據(jù)(II)的結(jié)論得到
,后逐步化簡
,原命題得證.
試題解析:(I),
當(dāng)時(shí),
恒成立,則函數(shù)
在
上單調(diào)遞增,無單調(diào)遞減區(qū)間;
當(dāng)時(shí),由
,得
,由
,
得,此時(shí)
的單調(diào)遞增區(qū)間為
,單調(diào)遞減區(qū)間為
.
(II)由(I)知:當(dāng)時(shí),
在
上遞增,
,顯然不成立;
當(dāng)時(shí),
,只需
即可,
令,則
,
在
上單調(diào)遞減,在
上單調(diào)遞增.
.
對
恒成立,也就是
對
恒成立,
,解得
,
若
在
上恒成立,則
.
(III)證明:,
由(II)得在
上恒成立,即
,當(dāng)且僅當(dāng)
時(shí)取等號,
又由得
,所以有
,即
.
則,
則原不等式成立. ………(12分)
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系中,曲線
的參數(shù)方程為
(
,
為參數(shù)),在以
為極點(diǎn),
軸的正半軸為極軸的極坐標(biāo)系中,曲線
是圓心在極軸上,且經(jīng)過極點(diǎn)的圓.已知曲線
上的點(diǎn)
對應(yīng)的參數(shù)
,射線
與曲線
交于點(diǎn)
.
(Ⅰ)求曲線的直角坐標(biāo)方程;
(Ⅱ)若點(diǎn),
在曲線
上,求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】菜農(nóng)定期使用低害殺蟲農(nóng)藥對蔬菜進(jìn)行噴灑,以防止害蟲的危害,但采集上市時(shí)蔬菜仍存有少量的殘留農(nóng)藥,食用時(shí)需要用清水清洗干凈,下表是用清水(單位:千克)清洗該蔬菜1千克后,蔬菜上殘留的農(nóng)藥
(單位:微克)的統(tǒng)計(jì)表:
(1)令,利用給出的參考數(shù)據(jù)求出
關(guān)于
的回歸方程
.(
,
精確到0.1)
參考數(shù)據(jù):,
,
其中,
(2)對于某種殘留在蔬菜上的農(nóng)藥,當(dāng)它的殘留量不高于20微克時(shí)對人體無害,為了放心食用該蔬菜,請估計(jì)至少需用用多少千克的清水清洗1千克蔬菜?(精確到0.1,參考數(shù)據(jù))
附:對于一組數(shù)據(jù),
,…,
,其回歸直線
的斜率和截距的最小二乘估計(jì)分別為
,
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),
,(
為常數(shù))
(1)若在
處的切線方程為
(
為常數(shù)),求
的值;
(2)設(shè)函數(shù)的導(dǎo)函數(shù)為
,若存在唯一的實(shí)數(shù)
,使得
與
同時(shí)成立,求實(shí)數(shù)
的取值范圍;
(3)令,若函數(shù)
存在極值,且所有極值之和大于
,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】“一帶一路”國際合作高峰論壇圓滿落幕了,相關(guān)話題在網(wǎng)絡(luò)上引起了網(wǎng)友們的高度關(guān)注,為此,21財(cái)經(jīng)APP聯(lián)合UC推出“一帶一路”大數(shù)據(jù)微報(bào)告,在全國抽取的70千萬網(wǎng)民中(其中為高學(xué)歷)有20千萬人對此關(guān)注(其中
為高學(xué)歷).
(1)根據(jù)以上統(tǒng)計(jì)數(shù)據(jù)填下面列聯(lián)表;
(2)根據(jù)列聯(lián)表,用獨(dú)立性檢驗(yàn)的方法分析,能否有的把握認(rèn)為“一帶一路”的關(guān)注度與學(xué)歷有關(guān)系?
高學(xué)歷(千萬人) | 不是高學(xué)歷(千萬人) | 合計(jì) | |
關(guān)注 | |||
不關(guān)注 | |||
合計(jì) |
參考公式: 統(tǒng)計(jì)量的表達(dá)式是
,
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,曲線
的參數(shù)方程為
(
為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),以
軸的正半軸為極軸,建立極坐標(biāo)系,曲線
的極坐標(biāo)方程為
.
(1)寫出的普通方程和
的直角坐標(biāo)方程;
(2)設(shè)點(diǎn)在
上,點(diǎn)
在
上,求
的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】4月16日摩拜單車進(jìn)駐大連市旅順口區(qū),綠色出行引領(lǐng)時(shí)尚,旅順口區(qū)對市民進(jìn)行“經(jīng)常使用共享單車與年齡關(guān)系”的調(diào)查統(tǒng)計(jì),若將單車用戶按照年齡分為“年輕人”(20歲~39歲)和“非年輕人”(19歲及以下或者40歲及以上)兩類,抽取一個(gè)容量為200的樣本,將一周內(nèi)使用的次數(shù)為6次或6次以上的稱為“經(jīng)常使用單車用戶”。使用次數(shù)為5次或不足5次的稱為“不常使用單車用戶”,已知“經(jīng)常使用單車用戶”有120人,其中是“年輕人”,已知“不常使用單車用戶”中有
是“年輕人”.
(1)請你根據(jù)已知的數(shù)據(jù),填寫下列列聯(lián)表:
年輕人 | 非年輕人 | 合計(jì) | |
經(jīng)常使用單車用戶 | |||
不常使用單車用戶 | |||
合計(jì) |
(2)請根據(jù)(1)中的列聯(lián)表,計(jì)算值并判斷能否有
的把握認(rèn)為經(jīng)常使用共享單車與年齡有關(guān)?
(附:
當(dāng)時(shí),有
的把握說事件
與
有關(guān);當(dāng)
時(shí),有
的把握說事件
與
有關(guān);當(dāng)
時(shí),認(rèn)為事件
與
是無關(guān)的)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某教師有相同的語文參考書3本,相同的數(shù)學(xué)參考書4本,從中取出4本贈送給4位學(xué)生,每位學(xué)生1本,則不同的贈送方法共有( )
A. 15種 B. 20種 C. 48種 D. 60種
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某研究性學(xué)習(xí)小組對春季晝夜溫差大小與某花卉種子發(fā)芽多少之間的關(guān)系進(jìn)行研究,他們分別記錄了3月1日至3月5日的每天晝夜溫差與實(shí)驗(yàn)室每天每100顆種子浸泡后的發(fā)芽數(shù),得到如下資料:
日期 | 3月1日 | 3月2日 | 3月3日 | 3月4日 | 3月5日 |
溫差 | 10 | 11 | 13 | 12 | 8 |
發(fā)芽數(shù) | 23 | 25 | 30 | 26 | 16 |
(1)從3月1日至3月5日中任選2天,記發(fā)芽的種子數(shù)分別為,求事件“
均小于25”的概率;
(2)請根據(jù)3月2日至3月4日的數(shù)據(jù),求出關(guān)于
的線性回歸方程
;
(3)若由線性回歸方程得到的估計(jì)數(shù)據(jù)與所選出的檢驗(yàn)數(shù)據(jù)的誤差不超過2顆,則認(rèn)為得到的線性回歸方程是可靠的,試問(2)所得的線性回歸方程是否可靠?
(參考公式:回歸直線方程為,其中
,
)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com