分析 (1)由x${\;}^{\frac{1}{2}}$+x${\;}^{-\frac{1}{2}}$=3,可得x+x-1=$({x}^{\frac{1}{2}}+{x}^{-\frac{1}{2}})^{2}$-2,x2+x-2=(x+x-1)2-2.代入利用“立方和公式”即可得出.
(2)由a2x=$\sqrt{2}$-1,可得a-2x=$\frac{1}{\sqrt{2}-1}$=$\sqrt{2}$+1.代入利用“立方和公式”即可得出.
解答 解:(1)∵x${\;}^{\frac{1}{2}}$+x${\;}^{-\frac{1}{2}}$=3,∴x+x-1=$({x}^{\frac{1}{2}}+{x}^{-\frac{1}{2}})^{2}$-2=7,x2+x-2=(x+x-1)2-2=47.
∴$\frac{{x}^{\frac{3}{2}}+{x}^{-\frac{3}{2}}-3}{{x}^{2}+{x}^{-2}-2}$=$\frac{({x}^{\frac{1}{2}}+{x}^{-\frac{1}{2}})(x-1+{x}^{-1})-3}{{x}^{2}+{x}^{-2}-2}$=$\frac{3×(7-1)-3}{47-2}$=$\frac{1}{3}$.
(2)∵a2x=$\sqrt{2}$-1,∴a-2x=$\frac{1}{\sqrt{2}-1}$=$\sqrt{2}$+1.
∴$\frac{{a}^{3x}+{a}^{-3x}}{{a}^{x}+{a}^{-x}}$=a2x-1+a-2x=$(\sqrt{2}-1)$-1+$(\sqrt{2}+1)$=2$\sqrt{2}$-1.
點(diǎn)評 本題考查了指數(shù)冪的運(yùn)算性質(zhì)、乘法公式,考查了推理能力與計(jì)算能力,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{3}$ | B. | $\frac{1}{2\sqrt{3}}$ | C. | $\frac{1}{2\sqrt{2}}$ | D. | $\frac{1}{3\sqrt{3}}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | y=sinx•cosx | B. | y=cosx | C. | y=2sinx | D. | y=$\frac{1-cosx}{1+cosx}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com