【題目】今年消毒液和口罩成了搶手年貨,老百姓幾乎人人都需要,但對(duì)于這種口罩,大多數(shù)人不是很了解.現(xiàn)隨機(jī)抽取40人進(jìn)行調(diào)查,其中45歲以下的有20人,在接受調(diào)查的40人中,對(duì)于這種口罩了解的占,其中45歲以上(含45歲)的人數(shù)占.

1)將答題卡上的列聯(lián)表補(bǔ)充完整;

2)判斷是否有的把握認(rèn)為對(duì)這種口罩的了解與否與年齡有關(guān).

參考公式:,其中.

參考數(shù)據(jù):

【答案】1)見解析;(2)有的把握認(rèn)為對(duì)這種口罩的了解與否與年齡有關(guān).

【解析】

1)根據(jù)題意先計(jì)算出對(duì)于這種口罩了解的人有20人,其中45歲以上(含45歲)的人數(shù)有5人,完成表格;

2)由題意先求出,然后再作判斷.

解:(1)由題意可得對(duì)于這種口罩了解的人數(shù)為40×50%=20,

45歲以上的人對(duì)這種口罩了解的人數(shù)為.

故列聯(lián)表如下:

了解

不了解

總計(jì)

45歲以下

15

5

20

45歲以上(含45歲)

5

15

20

總計(jì)

20

20

40

2)由題意可得

因?yàn)?/span>,所以有的把握認(rèn)為對(duì)這種口罩的了解與否與年齡有關(guān).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一個(gè)地區(qū)共有5個(gè)鄉(xiāng)鎮(zhèn),共30萬人其人口比例為32523,從這30萬人中抽取一個(gè)300人的樣本,分析某種疾病的發(fā)病率.已知這種疾病與不同的地理位置及水土有關(guān)則應(yīng)采取什么樣的抽樣方法?并寫出具體過程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}是公差為2的等差數(shù)列,數(shù)列{bn}滿足b1=1,b2=2,且anbn+bn=nbn+1(bn≠0).

(1)求數(shù)列{an},{bn}的通項(xiàng)公式;

(2)設(shè)cn=,求數(shù)列{cn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(本小題滿分12分)為預(yù)防H1N1病毒爆發(fā),某生物技術(shù)公司研制出一種新流感

疫苗,為測試該疫苗的有效性(若疫苗有效的概率小于90%,則認(rèn)為測試沒有通過),公司

選定2000個(gè)流感樣本分成三組,測試結(jié)果如下表:

分組

A

B

C

疫苗有效

673

疫苗無效

77

90

已知在全體樣本中隨機(jī)抽取1個(gè),抽到B組疫苗有效的概率是0.33

I)現(xiàn)用分層抽樣的方法在全體樣本中抽取360個(gè)測試結(jié)果,問應(yīng)在C組抽取樣本多少個(gè)?

II)已知,,求通過測試的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,已知直線的參數(shù)方程為為參數(shù)).在以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸,且與直角坐標(biāo)系長度單位相同的極坐標(biāo)系中,曲線的極坐標(biāo)方程是.

(1)求直線的普通方程與曲線的直角坐標(biāo)方程;

(2)設(shè)點(diǎn).若直與曲線相交于兩點(diǎn),求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),.

(1)當(dāng)時(shí),求曲線在點(diǎn)處的切線方程;

(2)令,討論的單調(diào)性.

(3)當(dāng)時(shí),恒成立,求實(shí)數(shù)的取值范圍.( 為自然對(duì)數(shù)的底數(shù), …).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),,(其中為自然對(duì)數(shù)的底數(shù),…).

(1)當(dāng)時(shí),求函數(shù)的極值;

(2)若函數(shù)在區(qū)間上單調(diào)遞增,求的取值范圍;

(3)若,當(dāng)時(shí),恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓

(1)求過點(diǎn)的圓的切線方程;

(2)點(diǎn)為圓上任意一點(diǎn),求的最值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知以為焦點(diǎn)的拋物線過點(diǎn),直線交于,兩點(diǎn),中點(diǎn),且.

1)當(dāng)時(shí),求點(diǎn)的坐標(biāo);

2)當(dāng)時(shí),求直線的方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案