如圖,E、F分別是三棱錐P-ABC的棱AP、BC的中點,PC=10,AB=6,EF=7,則異面直線AB與PC所成的角為( )

A.60°
B.45°
C.0°
D.120°
【答案】分析:先取AC的中點G,連接EG,GF,由三角形的中位線定理可得GE∥PC,GF∥AB且GB=5,GF=3,根據(jù)異面直線所成角的定義,再利用斜弦定理求解.
解答:解:取AC的中點G,連接EG,GF,
由中位線定理可得:GE∥PC,GF∥AB且GB=5,GF=3
∴∠EGF是異面直線PC,AB所成的角
在△GBF中由余弦定理可得:cos∠EGF==
∴∠EGF=60°
故選A
點評:本題主要考查空間幾何體的結(jié)構(gòu)特征和異面直線所成的角的求法,同時,還考查了轉(zhuǎn)化思想和運算能力,屬中檔題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,E、F分別是三棱錐P-ABC的棱AP、BC的中點,PC=10,AB=6,EF=7,則異面直線AB與PC所成的角為(  )
A、60°B、45°C、0°D、120°

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年天津市高三第三次月考理科數(shù)學試卷(解析版) 題型:選擇題

如圖,E、F分別是三棱錐P-ABC的棱AP、BC的中點,PC=10,AB=6,EF=7,則異面直線AB與PC所成的角為(   )

A.90°             B.60°             C.45°             D.30°

 

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年浙江省紹興一中分校高三(上)12月月考數(shù)學試卷(解析版) 題型:選擇題

如圖,E、F分別是三棱錐P-ABC的棱AP、BC的中點,PC=10,AB=6,EF=7,則異面直線AB與PC所成的角為( )

A.60°
B.45°
C.0°
D.120°

查看答案和解析>>

科目:高中數(shù)學 來源:2010-2011學年浙江省溫州市嘯秋中學高三(上)數(shù)學會考模擬試卷(解析版) 題型:選擇題

如圖,E、F分別是三棱錐P-ABC的棱AP、BC的中點,PC=10,AB=6,EF=7,則異面直線AB與PC所成的角為( )

A.60°
B.45°
C.0°
D.120°

查看答案和解析>>

同步練習冊答案