8.已知全集U={1,2,3,4,5,6},M={2,4,6},則∁UM=( 。
A.{2,4,6}B.{4,6}C.{1,3,5}D.{1,2,3,4,5,6}

分析 由全集U及M,求出M的補(bǔ)集即可.

解答 解:∵全集U={1,2,3,4,5,6},M={2,4,6},
∴∁UM={1,3,5},
故選:C.

點(diǎn)評(píng) 此題考查了補(bǔ)集及其運(yùn)算,熟練掌握補(bǔ)集的定義是解本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.直線l1:$\sqrt{3}$x-y+1=0,l2:x+5=0,則直線l1與l2的相交所成的銳角為30°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.在平面直角坐標(biāo)系xOy中,雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{4}$=1(a>0)的一條漸近線與直線y=2x+1平行,則實(shí)數(shù)a的值是1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.若x,y滿足約束條件$\left\{\begin{array}{l}3x+y-6≤0\\ x+y≥2\\ y≤2\end{array}\right.$,則x2+y2的最小值為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.下列命題中是假命題的是(  )
A.?φ∈R,使函數(shù)f(x)=sin(2x+φ)是偶函數(shù)
B.?α,β∈R,使得cos(α+β)=cosα+cosβ
C.?m∈R,使$f(x)=(m-1)•{x^{{m^2}-4m+3}}$是冪函數(shù),且在(0,+∞)上遞減
D.?a,b∈R+,lg(a+b)≠lga+lgb

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.函數(shù)f(x)的定義域是[${\frac{1}{2}$,1],則f(3-x)的定義域是(  )
A.[0,1]B.$[{0,\frac{5}{2}}]$C.$[{2,\frac{5}{2}}]$D.(-∞,3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.方程(a2+1)x2-2ax-3=0的兩根x1,x2滿足|x2|<x1(1-x1),且0<x1<1,則實(shí)數(shù)a的取值范圍為$a∈(-\frac{3}{2},1-\sqrt{3})∪(1+\sqrt{3},+∞)$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.如圖,在梯形ABCD中,AB∥CD,AB=4,AD=DC=CB=2,四邊形ACFE是矩形,AE=1,平面ACFE⊥平面ABCD,點(diǎn)G是BF的中點(diǎn).
(1)求證:CG∥平面ADF;
(2)求三棱錐E-AFB的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.如圖,AB是圓的直徑,PA垂直圓所在的平面,C是圓上的點(diǎn).求證:平面PAC⊥平面PBC;

查看答案和解析>>

同步練習(xí)冊(cè)答案