已知f(x)=lnx,g(x)=
1
2
x2+mx+
7
2
(m<0)
,直線l與函數(shù)f(x)、g(x)的圖象都相切,且與函數(shù)f(x)的圖象的切點(diǎn)的橫坐標(biāo)為1.
(Ⅰ)求直線l的方程及m的值;
(Ⅱ)若h(x)=f(x+1)-g′(x)(其中g(shù)′(x)是g(x)的導(dǎo)函數(shù)),求函數(shù)h(x)的最大值;
(Ⅲ)若ln(x+1)<x+c對(duì)任意x都成立,求實(shí)數(shù)c的取值范圍.
(Ⅰ)∵f′(x)=
1
x
,∴f'(1)=1.
∴直線l的斜率為1,且與函數(shù)f(x)的圖象的切點(diǎn)坐標(biāo)為(1,0).
∴直線l的方程為y=x-1.(2分)
又∵直線l與函數(shù)y=g(x)的圖象相切,
∴方程組
y=x-1
y=
1
2
x2+mx+
7
2
有一解.
由上述方程消去y,并整理得x2+2(m-1)x+9=0①
依題意,方程①有兩個(gè)相等的實(shí)數(shù)根,
∴△=[2(m-1)]2-4×9=0
解之,得m=4或m=-2
∵m<0,∴m=-2.(5分)
(Ⅱ)由(Ⅰ)可知g(x)=
1
2
x2-2x+
7
2
,
∴g'(x)=x-2∴h(x)=ln(x+1)-x+2(x>-1).(6分)
h′(x)=
1
x+1
-1=
-x
x+1
.(7分)
∴當(dāng)x∈(-1,0)時(shí),h'(x)>0,當(dāng)x∈(0,+∞)時(shí),h'(x)<0.
∴當(dāng)x=0時(shí),h(x)取最大值,其最大值為2,
(Ⅲ).ln(x+1)-x<c恒成立,所以c≥(ln(x+1)-x)max,
由(Ⅱ)可知ln(x+1)-x的最大值為0,
所以c≥0.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

定義在(0,+∞)上的三個(gè)函數(shù)f(x)、g(x)、h(x),已知f(x)=lnx,g(x)=x2-af(x),h(x)=x-a
x
,且g(x)在x=1處取得極值.
(1)求a的值及h(x)的單調(diào)區(qū)間;
(2)求證:當(dāng)1<x<e2時(shí),恒有x<
2+f(x)
2-f(x)

(3)把h(x)對(duì)應(yīng)的曲線C1向上平移6個(gè)單位后得到曲線C2,求C2與g(x)對(duì)應(yīng)曲線C3的交點(diǎn)的個(gè)數(shù),并說明道理.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=lnx,g(x)=x+
a
x
(a∈R).
(1)求f(x)-g(x)的單調(diào)區(qū)間;
(2)若x≥1時(shí),f(x)≤g(x)恒成立,求實(shí)數(shù)a的取值范圍;
(3)當(dāng)n∈N*,n≥2時(shí),證明:
ln2
3
ln3
4
•…•
lnn
n+1
1
n

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=lnx-
a
x

(Ⅰ)當(dāng)a>0時(shí),判斷f(x)在定義域上的單調(diào)性;
(Ⅱ)若f(x)<x2在(1,+∞)上恒成立,試求a的取值范圍;
(Ⅲ)若f(x)在[1,e]上的最小值為
3
2
,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=lnx,g(x)=x2-x,
(1)求函數(shù)h(x)=f(x)-g(x)的單調(diào)增區(qū)間;
(2)當(dāng)x∈[-2,0]時(shí),g(x)≤2c2-c-x3恒成立,求c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=lnx+cosx,則f(x)在x=
π2
處的導(dǎo)數(shù)值為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案